首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为满足水平井体积压裂技术中连续混配作业要求,并缓解常规羟丙基胍胶原料供给压力,开展快速水合胍胶压裂液体系的研究。探索对胍胶原粉进行细度分级和表面处理,使其能够快速分散水合,替代常规羟丙基胍胶,为水平井体积压裂的压裂液体系提供一种新的路径。本文优选配套杀菌剂,压裂液基液72 h稳定性提高70%;制备配套交联剂,有效降低稠化剂浓度,解决基液黏度高、冻胶交联速度快、残渣含量高等问题,改善混砂状态、施工摩阻和储层伤害。研究结果表明,快速水合胍胶压裂液的3 min溶胀率大于90%,72 h基液黏度保持率85%以上,交联时间30~180s,在120 ℃、170 s~(-1)剪切1h后的黏度达200 mPa·s,破胶后残渣含量小于400 mg·L~(-1),可适用于30~120 ℃储层的压裂作业。已在新疆油田开展5口水平井连续混配现场试验,施工及生产效果良好。  相似文献   

2.
为了改善羧甲基羟丙基胍胶(CMHPG)酸性压裂液性能,满足高温深井储层压裂改造需求,合成了一种有机交联剂,形成了组成为0.3%数0.6%CMHPG+0.6%数1.0%有机交联剂ZJ-1+0.6%交联调节剂TG-1+0.2%黏土稳定剂NW-1+0.3%高效增效剂G-ZP+0.05%APS的酸性压裂液体系,考察了该压裂液体系的耐温耐剪切性能、黏弹性、滤失性能、破胶性能和岩心基质损害率。研究结果表明,CMHPG加量为0.6%、交联剂ZJ-1加量为0.75%的压裂液体系在130℃、170 s~(-1)连续剪切90 min,冻胶的黏度大于200 mPa·s,150℃、170 s~(-1)连续剪切90 min,冻胶黏度大于100 mPa·s,表现出良好的耐温耐剪切性;CMHPG加量为0.3%的酸性压裂液冻胶的G'/G"值大于4,结构黏度强,携砂性能好;在90℃、破胶剂加量0.05%的情况下可实现1.5 h内破胶,破胶液黏度小于3 mPa·s,破胶液残渣含量为157 mg/L,对钠膨润土的防膨率为93%,表面张力23.9 mN/m,与煤油间的界面张力为0.85 mN/m;压裂液滤失量低,滤液对储层岩心基质渗透率伤害率约16%,对储层的伤害较小。该CMHPG酸性压裂液体系在某盆地页岩油探井进行了现场应用,取得了良好的应用效果。图3表7参10  相似文献   

3.
羧甲基羟丙基瓜尔胶压裂液的高温性能评价   总被引:1,自引:0,他引:1  
评价了羧甲基羟丙基瓜尔胶(CMHPG)压裂液在90~180℃的流变性与伤害特征。该稠化剂水不溶物含量低于1.1%,用于180℃储层的加量为0.60%,基液黏度88.6 mPa.s,交联液在170 1/s剪切100 min后的黏度大于50 mPa.s。0.25%交联液100℃时的储能模量为2.451 Pa,大于0.50%羟丙基瓜尔胶(HPG)交联液的0.7265Pa。CMHPG交联液在低破胶剂浓度下即可快速破胶水化,残渣含量为194~225 mg/L,不到HPG的1/2。CMHPG和HPG交联液对储层岩心的伤害率分别为39.8%、52.3%。CMHPG交联液悬砂性能良好。在排量2~6 m3/min时,0.45%CMHPG压裂液基液(用于150℃高温深井)的摩阻系数与0.30%HPG基液(用于70℃地层)相当。与HPG压裂液相比,CMHPG压裂液具有高弹性、高悬砂性及低稠化剂使用浓度、低基液黏度、低伤害、低摩阻的"二高四低"性能。图5表8参4  相似文献   

4.
胍胶及其衍生物是水力压裂液最常用的稠化剂,成本较低且对地层伤害较小,耐温性能较差。文章对胍胶进行醚化改性,制备了一种耐温性能较好的羧甲基羟丙基胍胶CMHPG-3;利用硼酸和无机锆合成了一种新型耐高温有机硼锆交联剂;通过优选胍胶压裂液中添加剂的种类和用量,研制了一种耐高温胍胶压裂液体系,并利用高温高压流变仪对此压裂液体系的综合性能进行了评价。结果表明,该压裂液体系具有较好的延迟交联性能,在胍胶用量仅为0.4%的条件下,此胍胶压裂液的最高抗温155℃;在130℃、170 s-1下持续剪切60 min的剩余黏度高于80 mPa·s;黏弹性能测试表明该压裂液体系具有较好的携砂性能;压裂液破胶时间短,可在90℃、2 h内完全破胶,得到的破胶液黏度低于4 mPa·s,且残渣含量较低,对储层伤害较小,储层的平均渗透率损害率仅为19.33%,现场应用施工顺利,取得了良好的压裂施工效果。  相似文献   

5.
常规胍胶压裂液胍胶加量大、破胶后残渣含量高,影响了低渗透储层的渗流能力。为改善这一问题,用硼酸、葡萄糖酸钠、三乙醇胺等制得有机硼交联剂JS-8,研究了JS-8、改性胍胶HPG-1和非离子型助排剂ZA-07组成的低浓度胍胶压裂液的各项性能。结果表明,该压裂液体系交联时间可调,抗温抗剪切性能较好,在80℃、170 s~(-1)下剪切持续90 min的黏度一直保持在218 mPa·s左右;破胶时间短,2 h内可完全破胶,破胶液黏度与残渣含量低、界面张力仅为1.07 mN/m,极大地降低了储层水锁伤害,压裂液对储层的平均渗透率伤害率仅为19.25%,可用于低渗透储层的压裂改造。图4表3参19  相似文献   

6.
为有效控制和降低压裂液对储层的伤害,进一步提高压裂液效果,降低压裂成本,开发了满足低渗透储层压裂需要的低质量分数、低残渣、低伤害的胍胶压裂液体系。该压裂液体系胍胶浓度为0.35%,交联剂用量为0.50%,破胶后残渣为144 mg/L,破胶剂用量为0.008%,破胶时间为3 h,与常规胍胶体系相比破胶残渣下降率为51.52%,起泡剂、黏土稳定剂、助排剂用量均为0.50%,温度稳定剂为0.10%。流变等研究分析结果表明该体系具有良好的抗温抗剪切能力,当温度达到140℃时黏度大于100 m Pa·s,在170 s~(-1)剪切90 min后黏度大于80 m Pa·s。通过对岩心伤害率与静态滤失进行研究发现伤害率下降均大于50%,静态滤失较小,有利于降低对储层的伤害。  相似文献   

7.
根据江汉油田页岩油藏具有低~中孔隙度、低一特低渗透率、地质构造复杂、敏感性强等非常规油藏的特征,室内研制了羧甲基羟丙基胍胶低伤害压裂液体系,评价了羧甲基羟丙基胍胶压裂液的溶胀性能、耐温抗剪切性能、破胶性能和对储层的伤害性能,以及无机盐离子对基液黏度的影响。实验结果表明,该压裂液的使用浓度为胍胶压裂液使用浓度的1/2时即可满足压裂施工的携砂要求,并且破胶后残渣含量低,降低了对储层的伤害,在潜页X井大规模压裂施工中应用成功。  相似文献   

8.
针对常规胍胶压裂液体系增稠剂浓度偏高,造成压裂成本较高、压裂液残渣含量高和对储层伤害较大的问题,用硼砂、多元醇和醚类助溶剂等合成了较高分子量的多核硼交联剂DY-1,研究了胍胶加量对压裂液黏度的影响,考察了压裂液的各项性能,并在新疆油田进行了现场应用。结果表明,胍胶加量在低于0.165%、高于0.135%时能与DY-1形成聚合物交联体。低浓度胍胶压裂液耐温耐剪切性较好,胍胶加量为0.18%~0.4%时,压裂液在30~140℃、170 s~(-1)下剪切60 min的黏度均大于100 mPa·s;30~100℃下压裂液的流动行为指数n(0.3~0.7)和稠度系数k(1.3~1.8)总体变化较为平缓,压裂液性能稳定;压裂液静态悬砂性能较好,在30~80℃下通过增加压裂液pH值可使陶粒的沉降速率降至0.05 cm/min;压裂液能有效控制滤失,造缝性能良好;在30~100℃下胍胶压裂液在3~4 h均能彻底破胶,破胶液黏度小于5 mPa·s,破胶液残渣含量低至76 mg/L。现场施工成功率100%,压裂液成本降低15.2%,增油效果明显,满足新疆油田储层改造的要求。  相似文献   

9.
采用自制聚合物配制出了合成聚合物基高温压裂液研究了体系组成对压裂液性能的影响,考察了组成为:0.40%稠化剂XJJ-4+0.25%交联剂J-1+0.015%pH调节剂W-1+0.2%助排剂。压裂液体系的耐温抗剪切性、黏弹性、流变性以及破胶性。研究结果表明,该压裂液体系在150℃、170 s~(-1)下连续剪切2h后的黏度约120mPa·s,耐温抗剪切性良好;在线性黏弹区内,体系储能模量G′恒大于损耗模量G″,是典型的黏弹性结构流体;稠度系数(2.141 mPa·S~(0.476))较大,流变行为指数(0.476)较小,具有明显的非牛顿流体行为;加入0.01%破胶剂APS,在150℃下3 h完全破胶水化,破胶液黏度1.38mPa·s,残渣含量15 mg/L,且破胶液具有较低的表面张力(26.24mN/m)和界面张力(1.83mN/m),有利于压裂施工后破胶液顺利返排,降低对地层的伤害。  相似文献   

10.
为满足海上油气田深井、超深井压裂需要,用NaNO_3加重海水与两性离子胍胶稠化剂、有机硼锆交联剂及其他添加剂配制压裂液,研究了NaNO_3加重海水基压裂液密度,溶胀性能,耐剪切性能,滤失性能,破胶性能,破胶液对岩心渗透率及对支撑剂导流能力的伤害。结果表明,35%NaNO_3加重海水与0.52%两性离子胍胶稠化剂及其他添加剂配制的压裂液密度为1.20 g/cm~3(20℃),NaNO_3海水溶液对两性离子胍胶稠化剂溶胀性能的影响大于海水,NaNO_3加重海水基压裂液耐剪切性能、降滤失性能等各项性能良好。在150℃、170 s~(-1)下连续剪切120min后的黏度为76 mPa·s;压裂液在80℃下的动态滤失系数为2.81×10~(-4)m/min~(0.5);在60℃和80℃下,压裂液在3数4 h完全破胶,破胶液黏度小于5 m Pa·s;压裂液对岩心基质渗透率损害率为23.3%;在82.7 MPa闭合压力下对支撑剂导流能力伤害率为41.89%;满足压裂施工要求。图4表3参15  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号