首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strong interfacial bonding and homogenous dispersion have been found to be necessary conditions to take full advantage of the extraordinary properties of nanotubes for reinforcement of composites. We have developed a fully integrated nanotube composite material through the use of functionalized single‐walled carbon nanotubes (SWNTs). The functionalization was performed via the reaction of terminal diamines with alkylcarboxyl groups attached to the SWNTs in the course of a dicarboxylic acid acyl peroxide treatment. Nanotube‐reinforced epoxy polymer composites were prepared by dissolving the functionalized SWNTs in organic solvent followed by mixing with epoxy resin and curing agent. In this hybrid material system, nanotubes are covalently integrated into the epoxy matrix and become part of the crosslinked structure rather than just a separate component. Results demonstrated dramatic enhancement in the mechanical properties of an epoxy polymer material, for example, 30–70 % increase in ultimate strength and modulus with the addition of only small quantities (1–4 wt.‐%) of functionalized SWNTs. The nanotube‐reinforced epoxy composites also exhibited an increased strain to failure, which suggests higher toughness.  相似文献   

2.
Poly(methyl methacrylate) (PMMA)‐functionalized multiwalled carbon nanotubes are prepared by in situ polymerization. Infrared absorbance studies reveal covalent bonding between polymer strands and the nanotubes. These treated nanotubes are blended with pure PMMA in solution before drop‐casting to form composite films. Increases in Young's modulus, breaking strength, ultimate tensile strength, and toughness of ×1.9, ×4.7, ×4.6, and ×13.7, respectively, are observed on the addition of less than 0.5 wt % of nanotubes. Effective reinforcement is only observed up to a nanotube content of approximately 0.1 vol %. Above this volume fraction, all mechanical parameters tend to fall off, probably due to nanotube aggregation. In addition, scanning electron microscopy (SEM) studies of composite fracture surfaces show a polymer layer coating the nanotubes after film breakage. The fact that the polymer and not the interface fails suggests that functionalization results in an extremely high polymer/nanotube interfacial shear strength.  相似文献   

3.
The application of single‐walled carbon nanotubes (SWCNTs) as saturable absorbers (SA) in a Nd:glass femtosecond laser is verified as a promising alternative to traditional semiconductor saturable‐absorber mirrors (SESAMs). The shortest laser pulses achieved with a SWCNT‐SA fabricated by the slow‐evaporation method are reported herein. Nearly Fourier‐limited 288 fs pulses are obtained with negative‐dispersion soliton mode‐locking. The importance of the properties of the starting material, such as the degree of purity and the chirality, and the successive slow‐evaporation deposition method is proven by using a multitechnique approach based on X‐ray diffractometry, scanning electron microscopy, and μ‐Raman spectroscopy. The high degree of nanotube alignment on the glass substrate and also the slight metallic character due to electron transfer between the glass matrix and the nanotubes themselves are identified as the main features responsible for the good laser response.  相似文献   

4.
The position‐controlled growth and structural and optical characteristics of ZnO nanotubes and their coaxial heterostructures are reported. To control both the shape and position of ZnO nanotubes, hole‐patterned SiO2 growth‐mask layers on Si(111) substrates with GaN/AlN intermediate layers using conventional lithography are prepared. ZnO nanotubes are grown only on the hole patterns at 600 °C by catalyst‐free metal–organic vapor‐phase epitaxy. Furthermore, the position‐controlled nanotube growth method allows the fabrication of artificial arrays of ZnO‐based coaxial nanotube single‐quantum‐well structures (SQWs) on Si substrates. In situ heteroepitaxial growth of ZnO and Zn0.8Mg0.2O layers along the circumference of the ZnO nanotube enable an artificial formation of quantum‐well arrays in a designed fashion. The structural and optical characteristics of the ZnO nanotubes and SQW arrays are also investigated using synchrotron radiation X‐ray diffractometry and photoluminescence and cathodoluminescence spectroscopy.  相似文献   

5.
A dandelion‐like supramolecular polymer (DSP) with a “sphere‐star‐parachute” topological structure consisting of a spherical hyperbranched core and many parachute‐like arms is constructed by the non‐covalent host–guest coupling between a cyclodextrin‐endcapped hyperbranched multi‐arm copolymer (host) and many functionalized adamantanes with each having three alkyl chain arms (guests). The obtained DSPs can further self‐assemble into nanotubes in water in a hierarchical way from vesicles to nanotubes through sequential vesicle aggregation and fusion steps. The nanotubes have a bilayer structure consisting of multiple “hydrophobic‐hyperbranched‐hydrophilic” layers. Such a structure is very useful for constructing a chlorosome‐like artificial aqueous light‐harvesting system, as demonstrated here, via the incorporation of hydrophobic 4‐(2‐hydroxyethylamino)‐7‐nitro‐2,1,3‐benzoxadiazole as donors inside the hyperbranched cores of the nanotubes and the hydrophilic Rhodamine B as the acceptors immobilized on the nanotube surfaces. This as‐prepared nanotube light harvesting system demonstrates unexpectedly high energy transfer efficiency (above 90%) in water. This extends supramolecular polymers with more complex topological structure, special self‐assembly behavior, and new functionality.  相似文献   

6.
The incorporation of carbon nanotubes to a polymer generally improves the stiffness and strength of the polymer, but the ductility and toughness of the polymer are compromised in most cases. Here we report the mechanical reinforcement of polyethylene (PE) using polyethylene‐grafted multiwalled carbon nanotubes (PE‐g‐MWNTs). The stiffness, strength, ductility and toughness of PE are all improved by the addition of PE‐g‐MWNTs. The grafting of PE onto MWNTs enables the well‐dispersion of nanotubes in the PE matrix and improves MWNT/PE interfacial adhesion. The grafting was achieved by a reactive blending process through melt blending of PE containing 0.85 wt % of maleic anhydride and amine‐functionalized MWNTs. The reaction between maleic anhydride and amine groups, as evidenced by X‐ray photoelectron spectroscopy and Raman spectroscopy, leads to the grafting of PE onto the nanotubes.  相似文献   

7.
An intumescent flame retardant, poly(diaminodiphenyl methane spirocyclic pentaerythritol bisphosphonate) (PDSPB) has been covalently grafted onto the surfaces of multiwalled carbon nanotubes (MWNTs) to obtain MWNT‐PDSPB and according nanocomposites were prepared via melt blending. After high density PDSPB (65 wt %) were attached to the MWNTs, core‐shell nanostructures with MWNTs as the hard core and PDSPB as the soft shell were formed. The resultant MWNT‐PDSPB was soluble and stable in polar solvents, such as DMF. The optical microscopy and TEM results showed that the functionalized MWNTs can achieve better dispersion in ABS matrix. The linear viscoelastic behavior indicated that MWNT‐PDSPB can form network structure at very low nanotube loading than un‐functionalized MWNTs. The results of flammability showed that better flame retardancy was obtained for ABS/MWNT‐PDSPB nanocomposites due to the better dispersion of MWNT‐PDSPB in ABS matrix. The flammability of the composites is strongly dependent on the network structure of nanotubes which reduces the diffusion of volatile combustible fragments generated by polymer degradation which diffuse towards the surface of the burning polymer to evaporate to feed the flame. The grafting of intumescent flame retardant of PDSPB can improve both the dispersion of nanotubes in polymer matrix and flame retardancy of the nanocomposites.  相似文献   

8.
A new type of light‐switchable “smart” single‐walled carbon nanotube (SWNTs) is developed by the reversible host–guest interaction between azobenzene‐terminal PEO (AzoPEO) and pyrene‐labeled host attached on the sidewalls of nanotubes via π–π stacking. The SWNTs hybrids not only are well dispersed in pure water, but also exhibit switchable dispersion/aggregation states upon the alternate irradiation of UV and visible light. Moreover, the SWNTs hybrids dispersion is preliminarily used as coating fluid to form transparent conductive films. The dispersant AzoPEO is removed by the contamination‐free UV treatment, decreasing the resistance of the films. This kind of light‐switchable SWNTs hybrids, possessing a ‘‘green’’ trigger and intact structure of the nanotube, may find potential applications in sensor of biomedicines, device fabrication, etc. Additionally, such a reversible host–guest interaction system may open up the possibility to control the dispersion state of SWNTs by other common polymers.  相似文献   

9.
Single‐walled carbon nanotubes (SWNTs) are functionalized through both covalent and noncovalent bonding approaches to enhance dispersion and interfacial bonding. The coefficient of thermal expansion (CTE) of the functionalized‐SWNT‐reinforced epoxy composites are measured with a thermal mechanical analyzer (TMA). Experimental results indicate that changes of the glass‐transition temperature (Tg) in functionalized SWNT–polymer composites are dependent upon the functionalization methods. The CTE below the glass‐transition temperature of nanocomposites with a 1 wt % loading of nanotubes is substantially diminished compared to a neat polymer. A reduction in the CTE of up to 52 % is observed for nanocomposites using functionalized nanotubes. However, the CTE above the Tg significantly increases because of the contribution from phonon mode and Brownian motions of a large number of SWNTs in resin‐crosslinked networks, but the increments are compromised by possible interfacial confinement. A tunable CTE induced through nanotube functionalization has application potentials for high‐performance composites, intelligent materials, and circuit protections.  相似文献   

10.
The vigorous response of multiwalled carbon nanotubes (MWNTs) to microwave irradiation, leading to the release of a large amount of heat, is used to locally melt a plastic matrix adjacent to the nanotubes within a period of seconds. This results in the intercalation of the MWNTs into the polymer matrix at room temperature without any physical damage to the polymer. The so‐called “microwave welding” approach creates a new paradigm for the formation of very strong MWNT–polymer bonds without the use of any adhesive, and represents a significant step forward for the fabrication of functional nanotube composites. Here, we demonstrate the implications of the anisotropic alignment of MWNTs in polymers, patterned conductors/resistors for soft electronics, and high‐strength composites, where the MWNTs are ‘soldered' to flexible polymer substrates.  相似文献   

11.
An alkoxy‐substituted poly(phenylene thiophene) is used in order to suspend single‐walled carbon nanotubes in an organic solvent. The suspension is spread on the air–water interface of a Langmuir trough and the floating film is characterized by means of Brewster angle microscopy and UV‐visible reflection spectroscopy and the compression isotherm is recorded. The polymer/carbon‐nanotube blend is transferred onto different substrates using the Langmuir–Blodgett technique. AFM measurements indicate the formation of globular structures for the samples transferred at low surface‐pressure values and a tubular morphology for high‐pressure‐deposited samples. AFM analysis is repeated on a sample exposed to soft X‐rays for about 5 h and a highly organized structure of bundles of carbon nanotubes rises up. Samples with different numbers of layers are transferred onto ITO substrates by means of the Langmuir–Blodgett method and are tested as photocathodes in a photo‐electrochemical cell. A Voc of 0.18 V, an Isc of 85.8 mA, FF of 40.0%, and η of (6.23 × 10?3)% are obtained.  相似文献   

12.
Microscale aggregate formation, resulting from high intrinsic filler attractions, is one of the major issues in nanocomposite preparation and processing. Herein, the dispersive effects achieved by a wide range of surface‐active agents, as well as surface oxidation and functionalization, are investigated. The aim of our research is to form a uniform, multiwalled carbon nanotube (MWNT) distribution in water‐soluble (poly(ethylene glycol)) and water‐insoluble (polypropylene) polymers. In order to understand the surface‐charge‐related stability of the treated nanotubes solutions, zeta‐potential measurements are applied. Quantification of the state of the MWNT dispersion is derived from particle‐size analysis, while visual characterization is based on optical and electron microscopy. To estimate the nucleating ability of the surface‐modified carbon nanotubes, the temperature of crystallization and the degree of crystallinity are calculated from differential scanning thermograms. Finally, we suggest general guidelines to produce uniform MWNT dispersions using a dispersive agent and/or surface treatment in water‐soluble and water‐insoluble polymers.  相似文献   

13.
The interior channels of carbon nanotubes are promising for studying transport of individual molecules in a 1D confined space. However, experimental investigations of the interior transport have been limited by the extremely low yields of fabricated nanochannels and their characterization. Here, this challenge is addressed by assembling nanotube membranes on glass capillaries and employing a voltage‐ramping protocol. Centimeter‐long carbon nanotubes embedded in an epoxy matrix are sliced to hundreds of 10 µm‐thick membranes containing essentially identical nanotubes. The membrane is attached to glass capillaries and dipped into analyte solution. Repeated ramping of the transmembrane voltage gradually increases ion conductance and activates the nanotube ion channels in 90% of the membranes; 33% of the activated membranes exhibit stochastic pore‐blocking events caused by cation translocation through the interiors of the nanotubes. Since the membrane‐capillary assembly can be handled independently of the analyte solution, fluidic exchange can be carried out simply by dipping the capillary into a solution of another analyte. This capability is demonstrated by sequentially measuring the threshold transmembrane voltages and ion mobilities for K+, Na+, and Li+. This approach, validated with carbon nanotubes, will save significant time and effort when preparing and testing a broad range of solid‐state nanopores.  相似文献   

14.
Organic field‐effect transistors (OFETs) based on oligothiophene‐functionalized truxene derivatives have been fabricated for use as novel star‐shaped organic semiconductors in solution‐processible organic electronics. The electronic and optical properties of compounds 1 – 3 , with increasing numbers of thiophene rings at each of the three branches, have been investigated using scanning electron microscopy (SEM), X‐ray diffraction measurements, and ultraviolet–visible (UV‐vis) and photoluminescence spectroscopies. The results show that with a stepwise increase of the thiophene rings at every branch, a transition from a polycrystalline to an amorphous state is observed. The characteristics of compounds 1 , 2 , and 3 used for OFETs exhibit a significant difference. The mobility depends greatly on the morphology in the solid state, and decreases in going from 1 to 3 . Mobilities up to 1.03 × 10–3 cm2 V–1 s–1 and an on/off ratio of about 103 for compound 1 have been achieved; these are the highest values for star‐shaped organic semiconductors used for OFETs so far. All the results demonstrate that the truxene core of the oligothiophene‐functionalized truxene derivatives not only extends the π‐delocalized system, but also leads to high mobilities for the compounds.  相似文献   

15.
Sol–gel condensation of tetraethoxysilane in the presence of designed self‐assembled β‐sheet peptide fibril templates, followed by template extraction, yields hollow silica nanotubes. The nanotubes are hundreds of nanometers long and possess a central pore of ~ 3.5 nm, determined by the fibril template diameter. The effects of synthesis conditions have been investigated and the resultant silica materials characterized by various techniques. Silica nanostructures with various morphologies have been produced previously using supramolecular organic assemblies as templates. Hollow nano‐ or microtubes, which may have applications in separations, catalysis, nano‐optics, and ‐electronics have been of particular interest. Peptide‐based templates are especially interesting because of their relevance to biological silica microstructure formation. The new fibrillar peptide templates described here have the advantages of prescribed diameter, twist pitch, and handedness, which should impart chirality on the resulting silica nanotubes, providing control of the internal surface architecture by appropriate peptide design.  相似文献   

16.
Biodegradable poly(?‐caprolactone) (PCL) has been covalently grafted onto the surfaces of multiwalled carbon nanotubes (MWNTs) by the “grafting from” approach based on in‐situ ring‐opening polymerization of ?‐caprolactone. The grafted PCL content can be controlled easily by adjusting the feed ratio of monomer to MWNT‐supported macroinitiators (MWNT‐OH). The resulting products have been characterized with Fourier‐transform IR (FTIR), NMR, and Raman spectroscopies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). After PCL was coated onto MWNT surfaces, core/shell structures with nanotubes as the “hard” core and the hairy polymer layer as the “soft” shell are formed, especially for MWNTs coated with a high density of polymer chains. Such a polymer shell promises good solubility/dispersibility of the MWNT–PCL nanohybrids in low‐boiling‐point organic solvents such as chloroform and tetrahydrofuran. Biodegradation experiments have shown that the PCL grafted onto MWNTs can be completely enzymatically degraded within 4 days in a phosphate buffer solution in the presence of pseudomonas (PS) lipase, and the carbon nanotubes retain their tubelike morphologies, as observed by SEM and TEM. The results present possible applications for these biocompatible PCL‐functionalized CNTs in bionanomaterials, biomedicine, and artificial bones.  相似文献   

17.
The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single‐walled carbon nanotubes (SWNTs) have been introduced as efficient electrical wires to connect biomolecules to metal electrodes in advanced nano‐biodevices. Besides preserving biofunctionality, the protein–nanotube connection should ensure appropriate molecular orientation, flexibility, and efficient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying‐down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide‐terminated functional chains attached to the carbon nanotubes. A single‐molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed IV characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more efficient and reproducible than for proteins directly connected with metal surfaces.  相似文献   

18.
The development of nonprecious metal‐based electrocatalysts for the oxygen reduction reaction holds the decisive key to many energy conversion devices. Among several potential candidates, transition metal and nitrogen co‐doped carbonaceous materials are the most promising, yet their activity and stability are still insufficient to meet the needs of practical applications. In this study, a core–shell hybrid electrocatalyst is developed via the self‐polymerization of dopamine and cobalt on carbon nanotubes (CNTs), followed by high‐temperature pyrolysis. The polymer‐derived carbonaceous shell contains abundant structural defects and facilitates the formation of Co? N/C active sites, whereas the graphitic carbon nanotube core provides high electrical conductivity and corrosion resistance. These two components separately fulfill different functionalities, and jointly afford the catalyst with excellent electrochemical performance. In 1 m KOH, Co? N/CNT exhibits a positive half‐wave potential of ≈0.91 V, low peroxide yield of <7%, as well as great stability. When used as the air catalyst of primary Zn–air and Al–air batteries, this hybrid electrocatalyst enables large discharge current density, high peak power density, and prolonged operation stability.  相似文献   

19.
Numerous applications, from molecular electronics to super‐strong composites, have been suggested for carbon nanotubes. Despite this promise, difficulty in assembling raw carbon nanotubes into functional structures is a deterrent for applications. In contrast, biological materials have evolved to self‐assemble, and the lessons of their self‐assembly can be applied to synthetic materials such as carbon nanotubes. Here we show that single‐walled carbon nanotubes, coated with a designed amphiphilic peptide, can be assembled into ordered hierarchical structures. This novel methodology offers a new route for controlling the physical properties of nanotube systems at all length scales from the nano‐ to the macroscale. Moreover, this technique is not limited to assembling carbon nanotubes, and could be modified to serve as a general procedure for controllably assembling other nanostructures into functional materials.  相似文献   

20.
Near‐field enhanced bifunctional plasmonic‐magnetic (PM) nanostructures consisting of silica nanotubes with embedded solid nanomagnets and uniformly dual‐surface‐coated plasmonic Ag nanoparticles (NPs) are rationally synthesized. The solid embedded sections of nanotubes provide single‐molecule sensitivity with an enhancement factor up to 7.2 × 109 for surface‐enhanced Raman scattering (SERS). More than 2× SERS enhancement is observed from the hollow section compared to the solid section of the same nanotube. The substantial SERS enhancement on the hollow section is attributed to the dual‐sided coating of Ag NPs as well as the near‐field optical coupling of Ag NPs across the nanotube walls. Experimentation and modeling are carried out to understand the dependence of SERS enhancement on the NP sizes, junctions, and the near field effects. By tuning the aspect ratio of the embedded nanomagnets, the magnetic anisotropy of nanotubes can be readily controlled to be parallel or vertical to the long directions for nano‐manipulation. Leveraging the bifunctionality, a nanotube is magnetically maneuvered to a single living mammalian cell amidst many and its membrane composition is analyzed via SERS spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号