共查询到20条相似文献,搜索用时 15 毫秒
1.
Maria Augusta de Luca Taís Espíndola Machado Renan Beretta Notti Marly Maldaner Jacobi 《应用聚合物科学杂志》2004,92(2):798-803
Hybrid materials were synthesized from epoxidized (68, 43, or 14%) styrene–butadiene rubber (SBR) and the hydrolysis product of tetraethoxysilane (TEOS) in situ under ultrasonic irradiation. The products were characterized with thermal analysis (differential scanning calorimetry and thermogravimetric analysis), stress–strain tests, scanning electron microscopy (including energy‐dispersive spectrometry), and swelling in tetrahydrofuran and water. The most transparent were those prepared from SBR with the highest degree of epoxidation, whereas those obtained from less epoxidized SBR and with larger amounts of TEOS showed distinct phases that could be considered two hybrid phases (one rich in TEOS and another rich in SBR). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 798–803, 2004 相似文献
2.
Organo‐montmorillonite was incorporated into model tire tread formulations through latex compounding methods, to evaluate its effects on elastomer reinforcement and dynamic properties. An intercalation structure was obtained by applying latex compounding method to prepare organoclay‐emulsion stryene butadiene (E‐SBR) masterbatches, for compounding with organoclay loading levels of 0–20 parts per hundred rubber (phr). Microstructure, curing properties and tire performance of the compounded rubber were investigated with the aid of X‐ray diffraction, rheometor and dynamic‐mechanical analysis, respectively. The results showed that organo‐montmorillonite filler provided effective reinforcement in the elastomer matrix, as indicated through mechanical and dynamic mechanical properties. Tread compounds using higher organoclay loadings displayed preferred ice traction, wet traction, and dry handling, but decreased winter traction and rolling resistance. Model compounds using 15 phr of organoclay loading levels were preferred for balanced physical and dynamic properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41521. 相似文献
3.
To introduce thiol–ene chemistry in the modification of composites by ionic liquid (IL), a novel functional IL, 1‐methylimidazolium mercaptopropionate (MimMP), was synthesized and investigated as a modifier for styrene–butadiene rubber/silica composites. MimMP could be hydrogen‐bonded with silica and react with the double bonds of rubber chains via thiol–ene chemistry. The filler networking, curing behavior, filler dispersion, crosslink density, and mechanical performance were fully studied. The filler networking in the uncured rubber compounds was effectively restrained. The vulcanization was largely accelerated by MimMP. The interfacial interaction was quantitatively evaluated and found to consistently increase with increasing MimMP. The mechanical performance and abrasion resistance of the modified vulcanizates improved considerably. The remarkable improvements were mainly ascribed to the improved interfacial structure comprised of MimMP–silica hydrogen bonding and MimMP–rubber covalent bonds via thiol–ene chemistry. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Preparation and properties of styrene‐butadiene rubber nanocomposites blended with carbon black‐graphene hybrid filler 下载免费PDF全文
Graphene has become an attractive reinforcing filler for rubber materials, but its dispersion in rubber is still a big challenge. In this work, a novel carbon black‐reduced graphene (CB‐RG) hybrid filler was fabricated and blended with styrene‐butadiene rubber (SBR) via simple two‐roll mill mixing. The prepared CB‐RG hybrids had a microstructure with small CB agglomerates adsorbed onto graphene surfaces. CB acted as a barrier preventing the RG sheets from restacking even after drying. Homogeneous dispersion of graphene sheets in SBR matrix was observed by the mechanical mixing method based on the application of the CB‐RG hybrid fillers. Dynamic mechanical analysis showed that Tg of the SBR/CB‐RG blend was higher than that of the SBR/CB blend indicating strong interfacial interactions between RG and SBR due to the high surface area of graphene and the π‐π interaction between SBR and graphene. The tensile properties of SBR/CB‐RG composites improved significantly and the volume resistivity decreased compared with the SBR/CB blends. The thermal stability of SBR composites filled with CB and CB‐RG showed slight difference. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41309. 相似文献
5.
The influence of starch on the properties of carbon‐black‐filled styrene–butadiene rubber (SBR) composites was investigated. When the starch particles were directly melt‐mixed into rubber, the stress at 300% elongation and abrasion resistance decreased evidently with increasing starch amount from 5 to 20 phr. Scanning electron microscopy observations of the abrasion surface showed that some apparent craters of starch particles were left on the surface of the composite, which strongly suggested that the starch particles were large and that interfacial adhesion between the starch and rubber was relatively weak. To improve the dispersion of the starch in the rubber matrix, starch/SBR master batches were prepared by a latex compounding method. Compared with the direct mixing of the starch particles into rubber, the incorporation of starch/SBR master batches improved the abrasion resistance of the starch/carbon black/SBR composites. With starch/SBR master batches, no holes of starch particles were left on the surface; this suggested that the interfacial strength was improved because of the fine dispersion of starch. Dynamic mechanical thermal analysis showed that the loss factor at both 0 and 60°C increased with increasing amount of starch at a small tensile deformation of 0.1%, whereas at a large tensile strain of 5%, the loss factor at 60°C decreased when the starch amount was varied from 5 to 20 phr. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
6.
Nonlinear stress relaxation of silica filled solution‐polymerized styrene–butadiene rubber compounds
The stress relaxation of silica (SiO2) filled solution‐polymerized styrene–butadiene rubber (SSBR) has been investigated at shear strains located in the nonlinear viscoelastic regions. When the characteristic separability times are exceeded, the nonlinear shear relaxation modulus can be factorized into separate strain‐ and time‐dependent functions. Moreover, the shear strain dependence of the damping function becomes strong with an increase in the SiO2 volume fraction. On the other hand, a strain amplification factor related to nondeformable SiO2 particles can be applied to account for the local strain of the rubbery matrix. Furthermore, it is believed that the damping function is a function of the localized deformation of the rubbery matrix independent of the SiO2 content. The fact that the time–strain separability holds for both the unfilled SSBR and the filled compound indicates that the nonlinear relaxation is dominated by the rubbery matrix, and this implies that the presence of the particles can hardly qualitatively modify the dynamics of the polymer. It is thought that the filler–rubber interaction induces a coexistence of the filler network with the entanglement network of the rubbery phase, both being responsible for the nonlinear relaxation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
In this research, the influence of adding α‐cellulose powder to styrene–butadiene rubber (SBR) compounds was investigated. Physicomechanical properties of SBR–α‐cellulose composites, including tensile strength, elongation, Young's modulus, tear strength, hardness, abrasion, resilience, and compression set, before and after ageing, were determined and analyzed. Young's modulus, hardness, and compression set increased and elongation and resilience decreased with increasing α‐cellulose loading in the composites, whereas tensile strength, tear strength, and abrasion resistance initially increased at low α‐cellulose concentration (5 phr), after which these properties decreased with increasing α‐cellulose content. Lower loadings of α‐cellulose (5 phr) showed better results than higher loadings, given that tensile strength, tear strength, and abrasion resistance increased at low α‐cellulose concentration. Theoretical prediction of elastic modulus was carried out using rule of mixtures, Hashin, Kerner, and Halpin–Tsai equations. Calculated results show that these equations are not suitable for accurate prediction for the work carried out. However, these models can be used with confidence for the prediction of elastic modulus because experimental results are higher than the calculated values. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2203–2211, 2005 相似文献
8.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004 相似文献
9.
The wear resistance of zinc oxide whisker (ZnOw)/natural rubber‐styrene butadiene rubber‐butyl rubber (NR‐SBR‐BR) composites showed that a tetra‐needle like ZnOw, which is treated by a coupling agent, improved the wear resistance of the rubber composites. The topography of the worn surfaces of the ZnOw/NR‐SBR‐BR composites was fractal, and the fractal dimension and abrasion loss decreased synchronously as the ZnOw content increased in the composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 667–670, 2003 相似文献
10.
In recent years, the rubber industry has come under pressure to improve health and safety at work, minimize damage to the environment, reduce costs, and increase competitiveness. Rubber compounds contain additives including curing chemicals, which are hazardous and harmful. Reducing their use or eliminating them altogether will be beneficial to rubber compounders and manufacturers of rubber articles. A styrene‐butadiene rubber (SBR) was cured and reinforced with a high loading of precipitated amorphous white silica nanofiller. The silica surfaces were pretreated with bis(3‐triethoxysilylpropyl) tetrasulfide (TESPT), which is a sulfur‐bearing bifunctional organosilane to chemically adhere silica to the rubber. The chemical bonding between the filler and rubber was optimized via the tetrasulfane groups of TESPT by adding accelerator and activator. The rubbers were subsequently cured and their hardness, tensile strength, elongation at break, stored energy density at break, tearing energy, tensile modulus, Young's modulus, and bound rubber content were measured. This study showed that using the filler in combination with a sulfur‐donor accelerator was the most efficient method for curing and reinforcing the rubber. This led to a significant reduction in the use of the curing chemicals, a faster curing cycle, and very good mechanical properties for the rubber vulcanizate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
11.
The reinforcing effect of a large amount of synthetic precipitated amorphous white silica nanofiller on the mechanical properties of styrene–butadiene rubber was studied. The silica surfaces were pretreated with bis(3‐triethoxysilylpropyl)tetrasulfane (TESPT). TESPT is a bifunctional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure in the rubber. The silica particles were fully dispersed in the rubber and the chemical bonding between the rubber and filler was optimized by the incorporation of accelerator and activator in the rubber. This study showed that the mechanical properties of the rubber vulcanizate improved substantially when the filler was added. The addition of elemental sulfur affected the rubber properties, although there was no overall advantage, as some properties improved and others deteriorated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
12.
The effects of blend ratio, crosslinking systems, and fillers on the viscoelastic response of ethylene–propylene–diene monomer (EPDM)/styrene–butadiene rubber (SBR) blends were studied as functions of frequency, temperature, and cure systems. The storage modulus decreased with increasing SBR content. The loss modulus and loss tangent results showed that the EPDM/SBR blend vulcanizate containing 80 wt % EPDM had the highest compatibility. Among the different cure systems studied, the dicumyl peroxide cured blends exhibited the highest storage modulus. The reinforcing fillers were found to reduce the loss tangent peak height. The blend containing 40 wt % EPDM showed partial miscibility. The dispersed EPDM phase suppressed the glass‐transition temperature of the matrix phase. The dynamic mechanical response of rubbery region was dominated by SBR in the EPDM–SBR blend. The morphology of the blend was studied by means of scanning electron microscopy. The blend containing 80 wt % EPDM had small domains of SBR particles dispersed uniformly throughout the EPDM matrix, which helped to toughen the matrix and prevent crack propagation; this led to enhanced blend compatibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
Conductive polymer composites were prepared using vulcanized styrene–butadiene rubber as a matrix and conductive carbon black as a filler. The filler loading was varied from 10 to 60 phr. The volume resistivity was measured against the loading of the carbon black to verify the percolation limit. The electrical conductivity of filled polymer composites is attributed to the formation of some continuous conductive networks in the polymer matrix. These conductive networks involve specific arrangements of conductive elements (carbon black aggregates) so that the electrical paths are formed for free movement of electrons. The effects of temperature and pressure on the volume resistivity of the composites were studied. The volume resistivity of all the composites increased with increase in temperature, and the rate of increase in the resistivity against temperature depended on the loading of carbon black. The change in volume resistivity during the heating and cooling cycle did not follow the same route, leading to the phenomena of electrical hysteresis and electrical set. It was found that the composites with 40 and 60 phr carbon black become more conductive after undergoing the heat treatment. Generally, all the composites showed a positive temperature coefficient of resistivity. The volume resistivity of all the composites decreased with increase in pressure. The relaxation characteristic of the volume resistivity of the composites was studied with respect to time under a constant load. It was found that the volume resistivity of the compressed specimen of the composites decreased exponentially with time. It was observed that initially a faster relaxation process and later a slower relaxation process occurred in these composites. Some mechanical properties of these composites were also measured to confirm the efficacy of these composites for practical applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2179–2188, 2004 相似文献
14.
Vinícius Demétrio da Silva Marly Maldaner Jacobi Henri Stephan Schrekker Sandro Campos Amico 《应用聚合物科学杂志》2018,135(36)
Poly‐p‐phenyleneterephthalamide is a broadly used aramid for the strengthening of materials. Nevertheless, its relatively inert surface is an obstacle for obtaining composites with enhanced properties. In this work, three ionic liquids (IL) were investigated as compatibilizers in the preparation of styrene‐butadiene rubber (SBR)‐aramid pulp composites. The composites were characterized using hardness and tensile tests, swelling, differential scanning calorimetry, and thermal gravimetric analysis, and also scanning electron microscopy. Aramid pulp treated with IL showed more fibrillation than the untreated pulp. The best characteristics were found for the composite with 5 phr of aramid pulp‐1 wt % of physisorbed IL, which showed the lowest swelling degree compared to the IL‐free SBR‐aramid composite (341% and 410%, respectively) and the highest tensile strength (2.48 MPa), 340% superior to that of SBR (0.73 MPa), and 25% superior to the IL‐free SBR‐aramid composite (2.05 MPa). Confirming the potential of imidazolium IL to be used as compatibilizers in SBR‐aramid composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46693. 相似文献
15.
Dynamic properties of star‐shaped,solution‐polymerized styrene–butadiene rubber and its cocoagulated rubber‐filled with silica/carbon black 下载免费PDF全文
The dynamic properties, including the dynamic mechanical properties, flex fatigue properties, dynamic compression properties, and rolling loss properties, of star‐shaped solution‐polymerized styrene–butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped styrene–butadiene rubber cocoagulated rubber (N‐SSBR), both filled with silica/carbon black (CB), were studied. N‐SSBR was characterized by 1H‐NMR, gel permeation chromatography, energy dispersive spectrometry, and transmission electron microscopy. The results show that the silica particles were homogeneously dispersed in the N‐SSBR matrix. In addition, the N‐SSBR/SiO2/CB–rubber compounds' high bound rubber contents implied good filler–polymer interactions. Compared with SSBR filled with silica/CB, the N‐SSBR filled with these fillers exhibited better flex fatigue resistance and a lower Payne effect, internal friction loss, compression permanent set, compression heat buildup, and power loss. The nanocomposites with excellent flex fatigue resistance showed several characteristics of branched, thick, rough, homogeneously distributed cross‐sectional cracks, tortuous flex crack paths, few stress concentration points, and obscure interfaces with the matrix. Accordingly, N‐SSBR would be an ideal matrix for applications in the tread of green tires. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40348. 相似文献
16.
L. Jong 《应用聚合物科学杂志》2008,108(1):65-75
Carboxylated styrene‐butadiene (SB) composites reinforced by a mixture of defatted soy flour (DSF) and carbon black (CB) were investigated in terms of their dynamic mechanical properties. DSF is an abundant renewable commodity and has a lower cost than CB. DSF contains soy protein, carbohydrate, and whey. Aqueous dispersions of DSF and CB were first mixed and then blended with SB latex to form rubber composites using freeze‐drying and compression molding methods. At 140°C, a single filler composite reinforced by 30% DSF exhibited roughly a 230‐fold increase in the shear elastic modulus compared to the unfilled SB rubber, indicating a significant reinforcement effect by DSF. Mixtures of DSF and CB at three different ratios were investigated as co‐fillers. Temperature sweep experiments indicate the shear elastic moduli of the co‐filler composites are between that of DSF and CB composites. Strain sweep experiments were used to study the fatigue and recovery behaviors of these composites. Compared with the DSF composites, the recovery behaviors of the 30% co‐filler composites after the eight consecutive deformation cycles of dynamic strain were improved and similar to that of 30% CB composite. Strain sweep experiments also indicated that the co‐filler composites have a greater elastic modulus than the CB reinforced composites within the strain range measured. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 相似文献
17.
Blowout behaviors of NR/SBR blend composites reinforced with carbon black were studied using a microwave oven and variation of the blowout time and temperature with the blend ratio was investigated. Morphology of the interior of the sample before exploding was observed and change of the crosslink density was measured. The blowout time became slower and the blowout temperature became higher as the SBR content of the specimen increased. The specimen with higher NR content had more cavities in the interior just before explosion. The crosslink density became lower by coming close to the blowout and crosslink density of the inner part was more reduced than that of the outer part. New organic materials were found in the burst region after blowout and they might be decomposed products of the polymer chains. The SBR specimen showed better blowout properties than the NR one. Principal sources to cause the blowout were found to be formation of the cavities in a rubber article, reduction of the crosslink density, and dissociation of the rubber chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
18.
Dichlorocarbene-modified styrene–butadiene rubber (SBR) prepared by the alkaline hydrolysis of chloroform using cetyltrimethylammonium bromide as a phase-transfer agent resulted in a product that showed good mechanical properties, excellent flame resistance, solvent resistance, and good thermal stability. The activation energy for this chemical reaction calculated from the time–temperature data on the chemical reaction by the measurement of the percentage of chlorine indicated that the reaction proceeded according to first-order kinetics. The molecular weight of the polymers, determined by gel permeation chromatography, showed that chemical modification was accompanied by an increase in molecular weight. The chemical modification was characterized by proton NMR, FTIR studies, thermogravimetric analysis, and flammability measurement. Proton NMR and FTIR studies revealed the attachment of chlorine through cyclopropyl rings to the double bond of butadiene. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 153–160, 1998 相似文献
19.
The mechanical properties, heat aging resistance, dynamic properties, and abrasion resistance of fibrillar silicate (FS)/styrene butadiene rubber (SBR) nanocomposites are discussed in detail. Compared with white carbon black (WCB)/SBR composites, FS/SBR composites exhibit higher tensile stress at definite strain, higher tear strength, and lower elongation at break but poor abrasion resistance and tensile strength. Surprisingly, FS/SBR compounds have better flow properties. This is because by rubber melt blending modified FS can be separated into numerous nanosized fibrils under mechanical shear. Moreover, the composites show visible anisotropy due to the orientation of nanofibrils. There is potential for FS to be used to some extent as a reinforcing agent for rubber instead of short microfibers or white carbon black. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2725–2731, 2006 相似文献
20.
Preparation and properties of octadecylamine modified graphene oxide/styrene‐butadiene rubber composites through an improved melt compounding method 下载免费PDF全文
Octadecylamine modified graphene oxide/styrene‐butadiene rubber (GO‐ODA/SBR) composites are prepared by a novel and environmental‐friendly method called “Improved melt compounding”. A GO‐ODA/ethanol paste mixture is prepared firstly, and then blended with SBR by melt compounding. GO‐ODA sheets are uniformly dispersed in SBR as confirmed by scanning electron microscope, transmission electron microscopy, and X‐ray diffraction. The interfacial interaction between GO‐ODA and SBR is weaker than that between GO and SBR, which is proved by equilibrium swelling test and dynamic mechanical analysis. GO‐ODA/SBR show more pronounced “Payne effect” than GO/SBR composites, indicating enhanced filler networks resulted from the modification of GO with ODA. GO‐ODA/SBR composite has higher tensile strength and elongation at break than SBR and GO/SBR composite. The tensile strength and elongation at break for the composite with 5 parts GO‐ODA per hundred parts of rubber increase by 208% and 172% versus neat SBR, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42907. 相似文献