首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micrometer and nanometer TiO2 particle‐filled poly(phthalazine ether sulfone ketone) (PPESK) composites with various filler volume fractions from 0.5 to 7.5 vol % were prepared by heating compression molding. The friction and wear behaviors of the PPESK composites were evaluated using the block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring under dry friction conditions. The wear debris and the worn surfaces of the PPESK composites filled with micrometer and nanometer TiO2 particles were investigated by using a scanning electron microscope (SEM), while the structures of PPESK composites and wear debris were analyzed with IR spectra. Experimental results show that antiwear properties of the PPESK composites can be improved greatly by filling nanometer TiO2 particles, and the friction coefficient decreases when the filler volume fraction is below 2.5%, but when the filler volume fraction is above 2.5% the friction coefficient increases gradually with increasing filler volume fraction. In the case of micrometer TiO2 filler, wear rates increase with increasing filler volume fractions under identical test conditions, and the friction coefficients are less sensitive to the filler volume fraction. It was also found that the wear mechanism of micrometer TiO2 particle‐filled PPESK is mainly severe adhesion and abrasive wear, while that of nanometer TiO2 particle‐filled PPESK is mainly slight abrasive wear. In the former case, there are no transfer film formed on the surface of the counterpart steel, and wear debris are in the form of long and large ribbon. While in the latter case, the wear debris was granule and their size was about 10 μm. In case of 1 vol % nanometer TiO2 particle‐filled PPESK composites, the transfer film was fairly thinner and smoother, and the transfer film provided better coverage on the surface of steel ring, while that of 7.5 vol % was thicker and discrete. These account for the different friction and wear behavior of micrometer and nanometer TiO2 particle‐filled PPESK composite. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 906–914, 2004  相似文献   

2.
SiO2 nanoparticle filled–poly(phthalazine ether sulfone ketone) (PPESK) composites with various filler volume fractions were made by heating compression molding. The tribological behavior of the PPESK composites was investigated using a block‐on‐ring test rig by sliding PPESK‐based composite blocks against a mild carbon steel ring. The morphologies of the worn composite surfaces, wear debris, and the transferred films formed on the counterpart steel surface were examined with a scanning electron microscope, whereas the chemical state of the Fe element in the transfer film was analyzed with X‐ray photoelectron spectroscopy. In addition, IR spectra were taken to characterize the structure of wear debris and PPESK composites. It was found that SiO2 nanoparticle filled–PPESK composites exhibit good wear resistance and friction‐reduction behavior. The friction and wear behavior of the composites was improved at a volume fraction between 4.2 and 14.5 vol % of the filler SiO2. The results based on combined SEM, XPS, and IR techniques indicate that SiO2 nanoparticle filled–PPESK composite is characterized by slight scuffing in dry sliding against steel and polishing action between composite surface and that of the countpart ring, whereas unfilled PPESK is characterized by severe plastic deformation and adhesion wear. In the former case a thin, but not complete, transfer film was formed on the surface of the counterpart steel, whereas in the latter case, a thick and lumpy transfer film was formed on the counterpart steel surface. This accounts for the different friction and wear behavior of unfilled PPESK and SiO2 nanoparticle filled–PPESK composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2136–2144, 2002  相似文献   

3.
This work is part of a program on composites used in thermoelectric devices. Tribological properties of dynamic vulcanizate blends of polypropylene and ethylene‐propylene‐diene rubber filled with 5 wt% of microscale powder have been studied. The microscale thermal‐shock‐resistant ceramic filler contains α‐Al2O3, mullite (3Al2O3 · 2SiO2 or 2Al2O3SiO2), β‐spodumene glass‐ceramic and aluminium titanate. We found that our ceramic particles are abrasive; they cause strong abrasion of softer steel ball surfaces during dry sliding friction. To overcome the difficulty of particle dispersion and adhesion, the filler was modified through grafting using three types of organic molecules. Dry sliding friction was measured using four types of counter‐surfaces: tungsten carbide, Si3N2, 302 steel and 440 steel. Thermoplastic vulcanizate filled with neat ceramic powder shows the lowest friction compared to composites containing the same but surface‐treated powder. We introduce a ‘bump’ model to explain the tribological responses of our composites. ‘Naked’ or untreated ceramic particles protrude from the polymer surface and cause a decrease of the contact area compared to neat polymer. The ball partner surface has only a small contact area with the bumps. As contact surface area decreases, so does friction and the amount of heat generated during sliding friction testing. Chemical coupling of the ceramic to the matrix smoothens the bumps and increases the contact surface, giving a parallel increase in friction. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
The wear and friction properties of poly (ether‐ether‐ketone) (PEEK) reinforced with 0–33 vol % (60 wt %) micron size Al2O3 composites were evaluated at a sliding speed of 1.0 m/s and nominal pressure from 0.5 to 1.25 MPa under dry sliding conditions using a pin‐on‐disk wear tester. The wear resistance of the pure PEEK is 10‐fold higher than that of mild steel under the similar test condition. It is improved to 18‐fold as compared with mild steel at 3.5 vol % Al2O3 content. The improvement in wear properties may be attributed to the thin, tenacious, and coherent transfer film formed between the steel countersurface and composite pin. However, the wear resistance of PEEK containing above 3.5 vol % Al2O3 was deteriorated, despite their higher hardness and stiffness as compared with that of composites containing lower Al2O3 content. This is attributed to the formation of thick and noncoherent transfer film, which does not prevent the wear of the composites from hard asperities of countersurface. Moreover, hard Al2O3 particles present in transfer film act as third body wear mechanism. The coefficient of friction of the composites is higher than that of pure PEEK. SEM and optical microscopy have shown that wear of pure PEEK occurs by the mechanism of adhesion mainly whereas of PEEK composites by microploughing and abrasion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Five kinds of polytetrafluoroethylene (PTFE)-based composites were prepared: PTFE, PTFE + 30 vol % SiC, PTFE + 30 vol % Si3N4, PTFE + 30 vol % BN, and PTFE + 30 vol % B2O3. The friction and wear properties of these ceramic particle filled PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester. The worn surfaces and the transfer films formed on the surface of the GCr15 bearing steel of these PTFE composites were investigated by using a scanning electron microscope (SEM)and an optical microscope, respectively. The experimental results show that the ceramic particles of SiC, Si3N4, BN, and B2O3 can greatly reduce the wear of the PTFE composites; the wear-reducing action of Si3N4 is the most effective, that of SiC is the next most effective, then the BN, and that of B2O3 is the worst. We found that B2O3 reduces the friction coefficient of the PTFE composite but SiC, Si3N4, and BN increase the friction coefficients of the PTFE composites. However, the friction and wear properties of the ceramic particle filled PTFE composites can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of the PTFE composites can be decreased by 1 order of magnitude. Under lubrication of liquid paraffin the friction coefficients of these ceramic particle filled PTFE composites decrease with an increase of load, but the wear of the PTFE composites increases with a load increase. The variations of the friction coefficients with load for these ceramic particle filled PTFE composites under lubrication of liquid paraffin can be properly described by the relationship between the friction coefficient (μ) and the simplified Sommerfeld variable N/P as given here. The investigations of the frictional surfaces show that the ceramic particles SiC, Si3N4, BN, and B2O3 enhance the adhesion of the transfer films of the PTFE composites to the surface of GCr15 bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of the GCr15 bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. Meanwhile, the interactions between the liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some cracks on the worn surfaces of the ceramic particle filled PTFE composites; the creation and development of these cracks reduces the load-supporting capacity of the PTFE composites. This leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2611–2619, 1999  相似文献   

6.
用热压成型法制备了纳米、微米ZnO填充联苯型聚醚砜酮(PPESUK)复合材料;考察了复合材料的显微硬度和弯曲强度;并研究了干摩擦条件下纳米、微米ZnO对复合材料摩擦磨损性能的影响。利用扫描电子显微镜观察分析PPESUK/ZnO复合材料磨损表面形貌及磨损机理。结果表明,在干摩擦条件下纳米ZnO填充PPESUK的转移膜不完整,致使对偶钢环对复合材料表面产生严重的犁削;而微米ZnO填充PPESUK的主要磨损机理是严重的磨粒磨损。  相似文献   

7.
Enhancement of the wear resistance of bronze‐filled polytetrafluoroethylene (PTFE) composites has been achieved using various fillers, for example, chromic oxide (Cr2O3), molybdenum disulfide (MoS2), graphite, and nanometer aluminum oxide (n‐Al2O3), in the present study. The wear resistance was evaluated by a block‐on‐ring wear tester, and the effects of fillers on the wear resistance as well as the mechanism were investigated. The wear rate for the composite where the recipe containing 59% PTFE + 40% bronze + 1% Cr2O3 was 0.5 × 10?5 mm?3/N m and for the composite in the recipe containing 60% PTFE + 40% bronze was 4.2 × 10?5 mm?3/N m, which meant that that Cr2O3 increased the wear resistance by approximately 10 times. The differential scanning calorimetry measure analysis showed that Cr2O3 had a positive effect on the crystallization of PTFE; the crystallinity of PTFE composites increased from 45% to 52%, which exhibited improved wear resistance. Wear testing and scanning electron microscope analysis had shown that Cr2O3 had a positive effect on the formation of transfer film and keeping it stable to exhibit improved wear resistance. X‐ray photoelectron spectroscopy results also showed that Cr2O3 was effective in tribochemical reactions during sliding against stainless ring; these maybe responsible for forming transfer film and lowering wear rate of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41117.  相似文献   

8.
Polytetrafluoroethylene (PTFE)‐based composites, filled with CeO2, CeF3, and La2O3 in volume contents of 5, 10, 15, 20, and 30%, were prepared. Then, the friction and wear behavior of these PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin‐lubricated conditions was evaluated using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites were investigated using a scanning electron microscope (SEM) and an optical microscope. Experimental results showed that filling CeO2, CeF3, and La2O3 into PTFE can reduce the wear of the PTFE composites by 1–2 orders of magnitude. When the content of CeO2 in PTFE is 15%, the friction and wear properties of the CeO2‐filled PTFE composite are the best. Meanwhile, when the content of La2O3 in PTFE is between 15 and 20%, the PTFE composite filled with La2O3 exhibits excellent friction and wear‐reducing properties. However, the friction coefficient of the CeF3‐filled PTFE composite increases but its wear decreases with increase in the content of CeF3 from 5 to 30%. The friction and wear‐reducing properties of CeO2‐, CeF3‐, and La2O3‐filled PTFE composites can be greatly improved by lubrication with liquid paraffin, but the limit loads of the PTFE composites decrease with increase in the content of CeO2, CeF3, and La2O3 in PTFE (from 5 to 30%) under the same conditions. Investigations of worn surfaces show that the interaction between liquid paraffin and the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites, especially the absorption of liquid paraffin into the microdefects of the PTFE composites, creates some cracks on the worn surfaces of the PTFE composites and that the creation and development of the cracks reduces the mechanical strength and the load‐supporting capacity of the PTFE composites. However, with increase of the content of CeO2, CeF3, and La2O3 in the PTFE, the microdefects in the PTFE composites also increase, which would lead to increase in the number of the cracks on the worn surfaces of the PTFE composites under load and, so, in turn, lead to the reduction of the limit loads of the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites under lubrication with liquid paraffin. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 78: 797–805, 1999  相似文献   

9.
The effect of inorganic fillers on the friction and wear behavior of frictional material based poly(m‐phenylene isophthalamide) (PMIA) is investigated. The polymer composites are prepared by compression molding. The friction and wear of PMIA composites are investigated on a block‐on‐ring machine by running the PMIA composite block against plain carbon steel. The morphologies of the worn surface of PMIA composite and the ring counterface are examined by using electron probe microanalysis. It is found that copper compounds including CuCl, CuCl2, Cu2O, and CuO filled PMIA exhibit considerably higher friction coefficient than unfilled PMIA, while the wear rate of those composites decrease. Especially, CuCl is the optimal filler in the copper compounds investigated above. The filled PMIA composite containing CuCl, graphite, and short carbon fiber shows the best properties for frictional material. The friction coefficient of CuCl–PMIA composite is higher than that of unfilled PMIA because of the abrasive action of CuCl particle. It is probably the smoother surface of counterpart ring and composite block that resulted in the lower wear rate and friction coefficient of PMIA composite. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2790–2794, 2001  相似文献   

10.
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410.  相似文献   

11.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

12.
Micrometer and nanometer copper particle‐filled polyoxymethylene composites (coded as POM‐micro Cu and POM‐nano Cu, respectively) were prepared by compression molding. The compression strength and tensile strength of the composites were evaluated with a DY35 universal materials tester. An RFT‐III reciprocating friction and wear tester was used to examine the tribological properties of the composites. The elemental compositions in the transfer films and the chemical states of the elements in the composite‐worn surfaces were analyzed with electron probe microanalysis and X‐ray photoelectron spectroscopy, while the surface morphologies were observed with scanning electron microscopy. It was found that Cu( CH2 O )n was produced in sliding of a POM‐nano Cu pin against an AISI 1045 steel block and Cu2O was produced in sliding of a POM‐micro Cu pin against the same counterface. POM‐micro Cu exhibited higher copper concentration in the transfer film compared with POM‐nano Cu, and the transfer film of the former was thick and patchy compared with that of the latter. It was also found that micrometer and nanometer copper particles as fillers in POM exhibit a distinctive size effect in modifying the wear mechanisms of the composites. In other words, the wear mechanism of POM‐micro Cu is mainly scuffing and adhesion, while that of POM‐nano Cu is mainly plastic deformation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2404–2410, 2000  相似文献   

13.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
The composites of poly(ether ether ketone) (PEEK) filled with micrometer‐sized Cu and Fe particles were prepared by compression molding. The friction and wear behaviors of the composites were examined on a pin‐on‐disc friction‐and‐wear tester by sliding PEEK‐based composites against tool steel at a sliding speed of 1.0 m s−1 and a normal load of 19.6N. Optical microscopic analysis of the transfer film and of the worn pin surfaces and wear debris was performed to investigate the wear mechanisms of the composites. It was found that Cu and Fe used as filler considerably decreased the wear rate of PEEK. A thin, uniform, and tenacious transfer film was formed when Cu was used as the filler, and a nonuniform and thick transfer film was formed when Fe was used as the filler. The transfer film played a key role in increasing the wear resistance of the PEEK composites. Plastic deformation was dominant for wear of PEEK–Cu, while abrasion and adhesion were dominant for wear of PEEK–Fe. Because of the strong affinity between Fe as filler and its identical counterpart in the counterface tool steel surface, the adhesion between the PEEK–Fe composite surface and the counterface tool steel surface was thus severe. This contributed to the generation of a thicker transfer film for PEEK–Fe. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 179–184, 2000  相似文献   

15.
High‐performance printed circuit board or electronic packaging substrate with low warping particularly at high frequency is the key demand of manufacturers. In the present work, poly(etheretherketone) (PEEK) matrix composites reinforced with untreated micron size aluminum nitride (AlN) and alumina (Al2O3) particles have been studied for dynamic modulus in the temperature range varying from 30 to 250°C. At 48 vol % particles, the room temperature modulus of the PEEK/AlN composites increased by approximately fivefold (~ 23 GPa), whereas it increased by twofold for PEEK/Al2O3 composite. The reinforcing efficiency is more pronounced at higher temperatures. The significant improvement in modulus was attributed to the better adhesion between the matrix and the AlN particles. Scanning electron microscope (SEM) and Kubat parameter showed that the poor adhesion between the matrix and the Al2O3 particles resulted in comparatively smaller increase in modulus of PEEK/Al2O3, despite higher intrinsic modulus of Al2O3 than that of AlN. SEM showed almost uniform distribution of particles in the matrix. The experimental data were correlated with several theoretical models. The Halpin–Tsai model with ξ (xi) is equal to four correlates well up to 48 vol % AlN composites while ξ is equal to two correlates only up to 18 vol % Al2O3 composites. Guth–Smallwood model also correlates well up to 28 vol % AlN and 18 vol % Al2O3‐filled composites. Thereafter, data deviated from it due to the particles tendency to aggregate formation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
In this work, the mechanical and tribological characteristics of E‐glass fiber‐reinforced vinylester composites have been investigated experimentally under dry sliding conditions. The E‐glass fiber‐reinforced vinylester composites with uniform micron and submicron size cenosphere particulates of three different sizes (2 µm, 900 nm, and 400 nm) had been prepared in the laboratory. In this work the effect of parameters such as applied normal load, particulate size, sliding speed, sliding distance and roughness on friction and wear behavior have been carried. A plan of experiments, based on the Taguchi design, was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) have been applied to investigate the influence of process parameters on the coefficient of friction (COF) and sliding wear behavior of these composites. It was found that the submicron size particulates 400 nm as filler contributed significantly to improve the mechanical properties and wear resistance of the composites. The experimental results indicate that the specific wear rate is greatly influenced by applied normal load and particle size. ANOVA results showed that the applied normal load significantly influence the specific wear rate of cenosphere filled glass fiber‐reinforced vinylester composites. Regression analysis is carried to check the suitability of the prediction equation and modeling of the wear parameters and the typical R2 values for COF and specific wear rate are 86.7 and 94.3%, respectively. The scanning electron microscopy are used clarify the experimental in the frictional and wear testing. POLYM. COMPOS., 35:775–787, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
The commencement of the industrial revolution paved the way for the fabrication of flexible polymers with high‐strength metalloceramics as novel materials of all kinds. Fabricating metal–ceramic/polymer conductive composites is one such dimension followed for the present research work making use of the properties of the three components. Electroless deposition, for permanent metallic coating, was performed to coat Al2O3 with metallic Cu followed by the inclusion of the Cu–Al2O3 filler into a poly(vinyl chloride) (PVC) matrix. X‐ray diffraction and energy‐dispersive X‐ray studies predicted a prominent growth of metallic Cu crystallites onto Al2O3 with an increased average size and variation in elemental composition, respectively, when compared to pristine Al2O3. Morphological behaviour via scanning electron microscopy also envisioned uniform Cu coating onto Al2O3 and a homogeneous dispersion throughout the polymer matrix. When incorporated into PVC, electrical conductivity analysis highlighted a distinct variation in composite phases from insulating (7.14 × 10?16 S cm?1) to semiconducting behaviour (8.33 × 10?5 S cm?1) as a function of Cu–Al2O3 filler. Mechanical behaviour (tensile strength, Young's modulus and elongation at break) and thermal properties of the prepared composites also indicated a substantial improvement in material strength with Cu–Al2O3 incorporation. The enhanced electrical conductivity along with improved thermomechanical status with significant filler–matrix interaction permits the potential usage of such novel composites in a range of state‐of‐the‐art semiconducting electronic devices. © 2018 Society of Chemical Industry  相似文献   

18.
Nanoscale alumina/protein gel composite films with 10–50 wt% filler were subjected to scratch testing and compared to micron-scale alumina/protein gel composites. Atomic force microscopy (AFM) was employed to examine the width, depth, and morphology of the as-produced scratches. The results show that the scratch depth in gelatin films and the tearing within the scratch decrease dramatically with the addition of the nanoscale (average particle size, 13 nm) alumina fillers. It was found that refining the particle size distribution of the Al2O3 powder (average particle size, 10 nm, with no particles larger than 70 nm) further reduced the scratch depth and width, while improving the dimensional integrity and surface roughness of the nanocomposites. Aging of the gelatin films improved the intrinsic scratch resistance of both filled and unfilled gelatin films. In comparison, micron-size Al2O3 filler not only increased the scratch width, but also resulted in poor particle dispersion and low transparency of the films. The optical clarity of the nanofilled composites was much higher than that of the composites with micron-size filler.  相似文献   

19.
To improve the tribological properties of basalt‐fabric‐reinforced phenolic composites, solid lubricants of MoS2 and graphite were incorporated, and the tribological properties of the resulting basalt‐fabric composites were investigated on a model ring‐on‐block test rig under dry sliding conditions. The effects of the filler content, load, and sliding time on the tribological behavior of the basalt‐fabric composites were systematically examined. The morphologies of the worn surfaces and transfer films formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The experimental results reveal that the incorporation of MoS2 significantly decreased the friction coefficient, whereas the inclusion of graphite improved the wear resistance remarkably. The results also indicate that the filled basalt‐fabric composites seemed to be more suitable for friction materials serving under higher loads. The transfer films formed on the counterpart surfaces during the friction process made contributions to the reduction of the friction coefficient and wear rate of the basalt‐fabric composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Microsized or nanosized α‐alumina (Al2O3) and boron nitride (BN) were effectively treated by silanes or diisocyanate, and then filled into the epoxy to prepare thermally conductive adhesives. The effects of surface modification and particle size on the performance of thermally conductive epoxy adhesives were investigated. It was revealed that epoxy adhesives filled with nanosized particles performed higher thermal conductivity, electrical insulation, and mechanical strength than those filled with microsized ones. It was also indicated that surface modification of the particles was beneficial for improving thermal conductivity of the epoxy composites, which was due to the decrease of thermal contact resistance of the filler‐matrix through the improvement of the interface between filler and matrix by surface treatment. A synergic effect was found when epoxy adhesives were filled with combination of Al2O3 nanoparticles and microsized BN platelets, that is, the thermal conductivity was higher than that of any sole particles filled epoxy composites at a constant loading content. The heat conductive mechanism was proposed that conductive networks easily formed among nano‐Al2O3 particles and micro‐BN platelets and the thermal resistance decreased due to the contact between the nano‐Al2O3 and BN, which resulted in improving the thermal conductivity. POLYM. ENG. SCI., 50:1809–1819, 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号