首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对野外复杂环境,结合腿足式行走和轮式行走机器人的优点,设计了一套足轮组合式探测机器人的控制系统,实现了腿足模式和轮式模式的切换。通过分析"六足纲"昆虫各腿的协调关系,提出了六足机器人的三角步态行走法,并在此基础上对足轮组合运动模式进行了分析,建立了足轮组合式机器人的运动模型和控制理论。设计的机器人能够完成实时环境视频采集,在四轮模式下的前进、后退、左转、右转,六足模式下的前进、后退、左横行、右横行、左转、右转,以及机器人的跟踪定位等功能。  相似文献   

2.
针对当前轮腿式越障机器人的局限性,设计了一种新型的车轮可变结构机器人,该机器人可以在轮腿之间自如切换。介绍了可变结构车轮的工作原理,该机构在平坦地面上运动以轮子模式行走,当遇到障碍物切换为类花瓣模式越过障碍。对车轮在两种模式下的直行与转弯过程进行理论分析,建立了运动学仿真模型,并对模型进行求解。为了验证分析结果,采用Adams软件对车轮的越障过程与复杂路面行走进行了运动仿真。仿真结果表明,设计的车轮结构可行性较高,具有轮式机构的稳定性,同时具有腿式机构较高的越障能力,使机器人可以适应多种复杂的路况环境。  相似文献   

3.
针对现有的机器人承载能力不足、复杂环境下适应能力弱以及运行速度慢等特点,创新性地提出了一种基于异形Stewart平台的电动并联式六轮足机器人,该机器人集成了轮式运动与足式运动的优点,可实现轮式、足式以及轮足复合式运动。首先,对机器人的机械结构与控制系统进行设计,然后,为了实现在复杂环境下稳定的行走,足式上设计三足"对角步态"、"两足步态"和"单足步态"的稳定行走算法,实现了机器人稳定且匀速行走;设计了一种在足式步态中调整"支撑项"与"腾空项"占空比的控制算法,克服了足端与地面接触瞬间对机身整体速度带来的影响。轮式运动设计了6轮协同控制,具备6轮独立驱动、独立转向等功能。轮足复合式运动模式下具有变高度、变支撑面、变轮距等功能。通过对电动并联式六轮足机器人多种运动模式进行试验,结果验证了电动并联式六轮足机器人性能的优越性以及控制算法的有效性。  相似文献   

4.
轮腿式机器人兼具轮式的移动速度快和腿式的越障能力强的优势,是新型移动机器人的发展方向。提出了一种基于3-PUU并联机构的轮腿式移动机器人,其具有并联机构的结构简单、刚度大、承载能力强等优势。对3-PUU轮腿式移动机器人的腿式行走步态进行了分析,阐述了轮腿切换原理以及轮式模式下的转向原理。通过重心计算,分析了该机器人在路面上运动的稳定性,确定了最大步长。利用三次样条插值法推导出了平台的运动轨迹方程,并在Matlab环境下进行仿真,得到平台的位移、速度、加速度变化规律。仿真结果表明,该机器人可实现连续稳定的行走,可用于煤矿井下等危险环境的救援任务。  相似文献   

5.
变胞机器人能够根据外界环境变化在轮式行驶和足式行走两种运动模式间自然切换,因此兼具在平整结构路面上快速行驶和在崎岖山地越障行走的能力。基于广义坐标法建立了变胞机器人转向重构过程的运动学模型,考虑到重构过程中摆动腿与环境接触时存在较大冲击,提出了利用阻抗控制方法实现摆动腿着地柔顺控制。在传统阻抗控制的基础上,基于李雅普诺夫渐进稳定性定理设计了自适应阻抗控制器,并利用粒子群优化算法对阻抗控制参数进行了优化。通过在不同环境刚度下仿真分析,证实了经过参数优化后的自适应阻抗控制器能够很好地实现对期望接触力的跟随,提高了变胞机器人对未知多变环境的适应性。最后针对变胞机器人转向重构过程中足着地进行了路面实验,进一步证实了优化后的自适应阻抗控制方法的优越性。  相似文献   

6.
针对管道机器人运动形式单一的问题,设计了一种具有多种运动模式并能进行切换的轮式管道机器人,给出了管道机器人的总体方案,设计了管道机器人的自适应变径机构、车轮变位机构和转弯机构,建立了管道机器人轮式行走时的运动模型和力学模型,并以此为基础对机器人主体结构进行优化设计。  相似文献   

7.
针对移动机器人在发展中存在的问题,综合轮式、履带式等不同移动机构的特点,设计了一种关节式轮履混合机器人,详细分析了其机械结构。该机器人具有多种运动模式,根据运动环境的不同,可以在纯轮式运动与纯履带式运动间切换。基于齐次坐标变换矩阵分析了机器人的质心稳定性与越障性能,建立了其质心方程与越障方程。实验证明,这种机器人能够充分发挥轮式运动与履带运动的优点,机动灵活,速度快,并且具有很强的地形适应能力和越障能力。  相似文献   

8.
结合足式机器人与轮式机器人的优点,提出了一种基于2(6-UPUR+3P)混联腿的轮足混合式行走机器人构型,并对该机器人进行了运动学建模与仿真分析.基于螺旋理论建立机器人并联腿部单支链的六维运动螺旋系,基于此得到1阶影响系数矩阵,进而推导出6-UPUR并联腿部的运动学模型;提出了机器人机身姿态调整算法,改善了机器人在静态步行步态下机身运动的平稳性;用Matlab算例仿真与Adams仿真对比验证得出运动学模型的正确性,用Adams/Simulink联合仿真验证得出机身姿态调整策略的有效性,为进一步进行轮足混合式行走机器人控制系统的设计奠定基础.  相似文献   

9.
为满足在多种地形下更好地完成任务的需求,设计了一种具有行走模式、越障模式和半折叠模式、并可根据不同地形改变运动模式的四足多模式移动机器人。当机器人处于行走模式时,可在普通较平坦路面行走;处于越障模式时,可通过提升腿部高度翻越障碍物;处于半折叠模式时,通过平台的折叠,可缩短轴距,用于较狭窄路况。利用螺旋理论对机构的平台以及腿部进行了自由度分析;运用D-H参数法求解了四足机器人的正运动学方程;利用Adams仿真软件对机器人的3种模式进行了仿真。结果表明,该机器人可完成行走、越障、半折叠平台通过一定宽度通道的任务,实现了机器人的多运动模式。  相似文献   

10.
搭建了电动并联式轮足机器人的运动学模型,在单腿工作空间约束和行走稳定性约束条件下完成了间歇步态和旋转步态的基本步态设计,保证机器人在大负重情况下的全方位稳定行走。分析了机器人运动速度矢量与不同基本步态之间的对应关系。提出了基于速度矢量的电动并联式轮足机器人全方位步态切换方法,分析了步态切换的最佳时机,详细介绍了不同种步态之间的步态切换过程。通过虚拟样机和物理样机试验平台对本步态切换方法进行仿真分析和试验验证。仿真与试验的结果表明,电动并联式轮足机器人在基本步态行走和步态切换过程中,稳定裕度始终不小于零,且机器人机身的横滚角和俯仰角分别在–1.5°~4°和–2.8°~2.5°范围内变化,该方法能够保证电动并联式轮足机器人稳定的完成步态切换。  相似文献   

11.
设计了一种新型轮腿混合机器人,该机器人结合了轮式移动机构与足式移动机构的优点,阐述了机器人的总体结构。根据该轮腿混合机器人的运动要求和性能特点,设计了基于MEGA16单片机的整套机器人控制系统,该控制系统实现了用NRF2401无线控制机器人的基本运动。根据所遇路况,通过无线遥控可以控制和选择机器人的轮式运动和腿式运动两种工作模式,增加了机器人对环境的适应性。  相似文献   

12.
基于槽轮间歇机构和摇杆滑块的串联组合结构,设计了一种新型轮-腿混合式移动机器人.通过串联组合结构,机器人可实现轮式和足式移动模式的相互切换,具有良好的地面适应能力.阐述了机器人的结构和工作原理,并对串联组合结构进行了等效处理和几何分析.时机器人进行了简单步态规划,通过仿真验证了所设计机器人的可行性.  相似文献   

13.
针对多足机器人在变地形环境下快速行走的问题,对多足机器人的腿部机构与运动模式进行了研究,设计了两种机器人腿部行走机构,即六连杆腿部机构与齿轮传动腿部机构,并基于这两种腿部行走机构组合了一种八足机器人。首先,对八足机器人各腿部行走机构和整体结构进行了设计分析,根据各腿部机构选择适用步态进行了研究,即前后连杆腿的对角步态与中部齿轮腿的单线直行步态;然后,研究了机器人的两种不同腿结构的行走性能,对其进行了运动学分析;最后,整体分析了机器人对角步态和越阶梯两种运动模式,并通过ADAMS软件对机器人两种运动模式进行了运动仿真,将后处理曲线与运动分析进行了对比。研究结果表明:机器人行走具有稳定性,两种运动模式具有可行性。  相似文献   

14.
车轮是人类历史上最伟大的发明之一,在交通运输领域得到了广泛的研究与应用。将车轮这种特殊的运动副引入到传统并联机器人构型设计中,可以有效拓展并联机器人的工作空间。基于全方位轮的关联矩阵描述,将含车轮的串联支链构型综合问题转化为含车轮的关联矩阵求解问题,综合出两类含车轮的无约束串联支链,并分析了两类串联支链的受力稳定性。提出了两种六自由度轮式并联机器人新构型,分析了基于全向轮的轮式并联机器人的自由度属性,并成功研制出了一台实验样机。六自由度轮式并联机器人融合了移动机器人和传统并联机器人的优势,不仅具有移动效率高、移动范围广的优点,且具备在局部小范围内进行高精度六自由度操作的能力,可广泛应用于大型精密设备制造过程中的加工、运输、调姿和装配等工业操作。  相似文献   

15.
面向多种复杂路面执行任务的需求,基于生物学变胞机理,提出了一种轮履型可重构机器人。该机器人包括两种运动模式,即车轮模式与履带模式,通过两种模式之间的切换可显著提高机器人的多地面适应性。开展了轮-履模式切换机理与传动原理研究,分析了地面接触宽度变化规律,得到了履带模式下的最大接触宽度为230.36 mm;分别计算了机器人在车轮和履带模式下的越障能力,通过仿真软件分析了机器人重心位置在越障时的变化趋势;最后,集成动力系统研制了机器人样机,以不同高度的木板和空心砖作为试验台对机器人进行了模式切换、越障性能分组测试。结果表明,车轮、履带模式下最大越障高度分别为98.5 mm和290 mm,与理论推导结果一致。此外,机器人能够在轮式与履带模式之间柔顺切换,具有多种复杂路面适应能力。  相似文献   

16.
四足仿生机器人斜面行走的运动研究   总被引:1,自引:0,他引:1  
以岩羊为仿生对象,开发出一款适用于山地行走的四足机器人,重点研究其斜面运动。首先对三段式的腿部结构进行运动学建模,然后对机器人的斜面直线行走做出规划,最后进行仿真验证。仿真结果表明,机器人可以在斜面上保持连续平稳地运动;给出了一种通过控制身体俯仰角来实现斜面连续平稳运动的方法,为四足机器人实现山地环境的运动提供了参考。  相似文献   

17.
针对非结构环境下六轮腿机器人地形通过性及高效行走问题,在已有并联六轮腿机器人模型的基础上,建立六足轮腿机器人运动学模型,分析机器人在凸起、凹坑、斜坡、崎岖等典型非结构地形下的移动能力,获得典型非结构地形机器人移动能力与机器人构型参数的相互影响关系.进而规划了六轮腿机器人典型大尺度非结构地形条件下的运动步态,通过ADAMS软件仿真验证了运动模型的正确性及运动步态的可行性;研究结果可为六轮腿机器人非结构地形条件下实现高效行走的控制策略提供借鉴.  相似文献   

18.
针对非结构环境下六轮腿机器人地形通过性及高效行走问题,在已有并联六轮腿机器人模型的基础上,建立六足轮腿机器人运动学模型,分析机器人在凸起、凹坑、斜坡、崎岖等典型非结构地形下的移动能力,获得典型非结构地形机器人移动能力与机器人构型参数的相互影响关系.进而规划了六轮腿机器人典型大尺度非结构地形条件下的运动步态,通过ADAMS软件仿真验证了运动模型的正确性及运动步态的可行性;研究结果可为六轮腿机器人非结构地形条件下实现高效行走的控制策略提供借鉴.  相似文献   

19.
针对非结构环境下六轮腿机器人地形通过性及高效行走问题,在已有并联六轮腿机器人模型的基础上,建立六足轮腿机器人运动学模型,分析机器人在凸起、凹坑、斜坡、崎岖等典型非结构地形下的移动能力,获得典型非结构地形机器人移动能力与机器人构型参数的相互影响关系.进而规划了六轮腿机器人典型大尺度非结构地形条件下的运动步态,通过ADAMS软件仿真验证了运动模型的正确性及运动步态的可行性;研究结果可为六轮腿机器人非结构地形条件下实现高效行走的控制策略提供借鉴.  相似文献   

20.
新型仿生六足机器人自由步态中足端轨迹规划   总被引:2,自引:0,他引:2  
设计了一种具有变形关节和轮式足端的新型仿生六足机器人,该机器人具备轮式、爬行、步行等运动模式,有较好的灵活性及环境适应能力。运用矢量法构建了机器人运动学模型,并利用几何关系对模型进行求解。对机器人沿给定的路径执行自由步态时机器人所允许的最大步幅进行了分析。基于不同的地形条件,规划了抛物线和直线-抛物线两种足端轨迹。仿真结果表明,机器人在沿给定的路径执行自由步态时,抛物线和直线-抛物线两种足端轨迹规划方法合理、可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号