首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews some of the chemical interactions that occurred at the interface of ceramic/molten metal liquids. Control of interfacial reactions between dissimilar materials is an important issue in numerous technological applications, such as brazing of ceramics to metals, design of ceramic–metal composites, coatings of ceramics on metal substrates, and development of crucibles for melting of refractory metals. In ceramic/metal systems, wetting of the ceramic surface by the liquid metal is typically accompanied to some extent by interfacial reactions. The chemical incompatibility between the metal and non‐metallic materials can result in the formation of undesirable phases, due to the chemical and metallurgical reactions that take place during processing or in service. There is a need, therefore, to characterize the governing factors and reaction pathways at these interfaces. So, when the reaction products obtained during interdiffusion processing are not favorable, the diffusion pathway can be modified to control their formation.  相似文献   

2.
Molten metal processing can be effectively simulated using state-of-the-art computer algorithms, and manufacturers increasingly rely upon these tools to optimize the design of their operations. Reliable thermophysical properties of the solid, solid + liquid, and liquid phases are essential for effective computer simulation. Commercially available instruments can measure many of the required properties of molten metals (e.g., transformation temperatures, thermal conductivity, specific heat, latent heat, and density). However, there are no commercially available instruments to characterize several important thermophysical properties (e.g., emissivity, electrical resistivity, surface tension, and viscosity). Although the literature has numerous examples of measurements of surface tension using the sessile drop and the oscillating drop techniques, literature references are sparse with regard to measurements of emissivity, electrical resistivity, and viscosity. The present paper discusses the development of an oscillating cup viscometer and its application to characterizing the viscosity of fully molten industrial alloys. The theory behind the oscillating cup technique is reviewed, and the design details of the current instrument are discussed. In addition, experimental data of the viscosity of several nickel-based superalloys are presented.  相似文献   

3.
The objective of the present work was to join reaction-bonded silicon carbide to Inconel 600 (IN600, a nickel-based superalloy) for use in high temperature applications by brazing with an Fe-20wt% alloy. This joining method resulted in the molten filler metal reacting with the IN600 to form a Ni-Fe-Si solution, which in turn formed a liquid with the free silicon phase of the RBSC. This liquid reacted vigorously with the SiC component of the RBSC to form low melting point phases in both starting materials and chromium carbides at the metal-ceramic interface. By using solution thermodynamics, it was shown that a Ni-Fe-Si liquid with equimolar nickel and iron contents and silicon content of less than 30 at% Si will decompose -SiC at the experimental brazing temperatures; it was also shown that these predictions agree with the experimentally observed microstructures and line composition profiles.  相似文献   

4.
In this article, the synthesis of a newer generation of metastable aluminum- titanium (Al-Ti) materials is presented and discussed. Two equilibrium processing methods, using disintegrated melt deposition, were chosen and tried. The first restricted the interaction time between powders of titanium and molten aluminum, whereas the second essentially involved a change in surface characteristics of titanium powders prior to their addition to molten aluminum. The results of microstructural characterization and X-ray diffraction studies conducted on the Al-Ti materials, synthesized using the two methods, reveal the presence of elemental titanium and other phases in the aluminum matrix, thereby providing confirmation as to the metastable nature of these materials. Results also indicate that a significantly higher amount of titanium can be retained in the metal matrix at low processing temperatures when compared with predictions of the equilibrium Al-Ti phase diagram. Results of this study provide an innovative, viable, and cost-effective approach to synthesize metastable materials for both scientific and engineering applications.  相似文献   

5.
液态模锻作为一种精密成型技术应用范围不断扩大,液锻件正在不断替代普通铸件和固态锻件用于各行各业。但液态模锻的材料范围不够明晰,导致铸造合金液态模锻研究与应用很多,而各种变形合金的液态模锻却鲜有报道。如果定义适于液态模锻技术成型的材料统称为液态模锻材料,并用流变充型能力、流变补缩能力以及开裂敏感性定量表征液锻材料的工艺性能,则各种合金钢、球墨铸铁、铝合金、镁合金、锌合金、铜合金、生物材料及金属基复合材料都属于液锻材料,且都具有较好的液锻工艺性能。目前只有液锻铝合金、液锻镁合金、液锻锌合金和一些液锻合金钢研究应用活跃,并取得了工业应用。建议今后加强液锻材料的工艺性能预报、变形合金特别是宽结晶温度范围合金的液态模锻以及金属基复合材料的研究开发。  相似文献   

6.
针对离心力场中铝熔体在SiC多孔介质内的渗流传热现象,考虑离心力对渗流传热过程的影响,根据局部非热平衡假设建立了多孔介质渗流传热模型。采用全隐格式TDMA算法和第一类迎风差分方法对渗流过程的温度场进行了数值计算。研究分析了不同复合层厚度下离心渗透过程中的流场和温度场瞬态变化规律。计算结果表明,在渗透区域,熔体与SiC颗粒存在着一定温差,而在渗透前沿,这种温差相对较大。渗流速度变化存在两个十分明显的阶段,渗流速度较高且急剧下降的初始渗透阶段以及渗流速度相当平稳的后续阶段。渗流速度的这种瞬态变化规律主要是多孔介质内流体流动与离心压力相互作用的结果。渗透初期形成的紊流状态,是导致熔体卷吸空气、使复合材料内部形成气孔的主要原因之一。选择合适的工艺参数对于确保铸件质量是十分关键的。  相似文献   

7.
对10000m3/h空分设备主冷液氧中发现的固体粉尘进行成分分析与含量测量,确认了这些固体粉尘的主要成分为铁、铝、硅的氧化物;分析了固体粉尘的来源及其对空分设备安全生产的危害性,提出了防止固体粉尘进入空分塔的措施。  相似文献   

8.
Microwave enhanced stabilization of heavy metal sludge   总被引:1,自引:0,他引:1  
A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air]. The organic in the sludge affected stabilization, whether or not the organic smoldered. During heating in conventional ovens, exothermic oxidation of the organic resulted in sludge temperatures of about 500 degrees C for oven control temperatures of 200-500 degrees C. After microwave heating dried the sludge, the sludge temperature rose to 500 degrees C. The reaction between copper ions and metal aluminum in the dried sludge should be regarded as a solid phase reaction. Adding aluminum metal powder and reaction temperature were the key parameters in stabilizing copper in the heavy metal sludge, whether heated by microwave radiation or conventional oven. The mass balance indicates insignificant volatization of the copper during heating.  相似文献   

9.
An outline of the stepwise heating method for measuring thermal diffusivity and specific heat capacity of samples in both solid and liquid phases is described. The method is based on the measurement of temperature response at the surface of a solid sample when the other surface is heated in step-function. By making the best use of the characteristic points of this method, applications to samples in the liquid state, especially to high temperature melts such as molten salts, have been tried. As examples of measurement results, the thermal diffusivity, specific heat capacity, and thermal conductivity of zirconia brick and the thermal diffusivity of molten salts are shown in graphic form.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

10.
An analytical model of the true area of contact between molten metal and a rough, solid surface has been used to calculate thermal contact resistance and to predict how it changes with surface roughness, substrate thermal properties and contact pressure. This analytical model was incorporated into a three-dimensional, time-dependent numerical model of free-surface flows and heat transfer. It was used to simulate impact, spreading and solidification of molten metal droplets on a solid surface while calculating contact resistance distributions at the liquid–solid interface. Simulations were done of the impact of 4 mm diameter molten aluminum alloy droplets and 50 μm diameter plasma sprayed nickel particles on steel plates. Predicted splat shapes were compared with photographs taken in experiments and simulated substrate temperature variation during droplet impact was compared with measurements.  相似文献   

11.
鱼海涛  常琳 《材料导报》2007,21(Z2):80-82
研究了入射击波作用下纳米铝粉与环氧丙烷快速反应的热动力学行为.利用X射线衍射(XRD)对反应产物成分进行了分析,结果表明:Al2O3不同相产生于不同温度区.反应产物的扫描电镜(SEM)结果显示:反应产物表面发现了一些孔洞,表明纳米铝粉与其亚氧化物的反应是剧烈的.透射电镜(TEM)数据显示:反应产物多为球状,部分为絮状,其颗粒直径处于20~90 nm的范围.纳米铝粉反应过程中,其反应产物表面的聚结与环氧丙烷热分解过程中的氧原子及含氧分子含量限制了纳米铝粉的反应度.  相似文献   

12.
For Sn–58Bi low temperature solder alloy, local molten induced from electromigration Joule heating might change the atomic diffusion and interfacial behavior. In this paper, the diffusion behavior and interfacial evolution of Cu/Sn–58Bi/Cu joints were studied under liquid–solid (L–S) electromigration in molten solder and were compared with the interfacial behaviors in solid–solid (S–S) electromigration in solid solder. L–S or S–S electromigration was realized by applying a current density of 1.0?×?104 A/cm2 to molten solder at 150 °C or solid solder at 25 °C, respectively. During S–S electromigration, Bi atoms were driven towards anode side under electromigration induced flux and then accumulated to form Bi-rich layer near anode interface with current stressing time increasing. During L–S electromigration, Bi atoms were reversely migrated from anode to cathode to produce Bi segregation at cathode interface, while Cu atoms were rapidly dissolved into molten solder from cathode and migrated to form large amounts of Cu6Sn5 rod-like phases near anode interface. The reversal in the direction of Bi atoms may be attributed to the reversal in the direction of electromigration induced flux and correspondingly the change on effective charge number of Bi atoms from negative to positive.  相似文献   

13.
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3 wt% Mg and Al-3 wt% Mg-7 wt% Si alloys were studied to provide a better understanding of the composite fabrication process, especially in the presence of SiC reinforcement. Al2O3-matrix composites with and without SiC particulates have been produced by directed oxidation of aluminum alloys. The microstructure consists of three interpenetrating phases: the SiC preform, a continuous -Al2MO3 matrix, and a network of unoxidized metal. The volume fraction of metal within the oxidation product decreases with increasing processing temperature. The preform does not show any evidence of degradation by the molten alloy, but the growth front tends to climb up the particles, increasing the oxidation area and therefore enhancing the rate of composite growth. The amount of porosity was found to increase with the Mg content in the alloy, from 2.0 vol% for 0.5 wt% Mg to 5.8 vol% for 3 wt% Mg. The role of magnesium and silicon in the growth process are discussed.  相似文献   

14.
A primary challenge in brazing is the controlled formation of phases resulting from interactions of elements of the liquid filler metal with those of the base material. The morphology of the brazed joint, which is decisive for the mechanical properties of the joint, is influenced by present elements and process parameters such as brazing temperature and time. Furthermore, the wetting of the base material is a crucial factor in joining of aluminum because of the low wettability of the alumina layer by molten brazing filler metals. In order to remove the alumina and prevent reoxidation of the substrate surface, the brazing process can be conducted in vacuum or inert gas atmosphere. Again, selection of process parameters is crucial for the quality of the brazed seam. In this work, we focus on the influence of the process parameters on the wetting behavior and the formation of aluminum‐copper phases theoretically by means of thermodynamic calculations using a CALPHAD database as well as by means of in‐situ observations in the large‐chamber scanning electron microscope (LC‐SEM) and by brazing experiments. Both the critical temperatures with respect to the wetting and the reaction kinetics as well as the crucial stages of the brazing process and the resulting phases were determined.  相似文献   

15.
本工作利用无压渗透法制备刚玉颗粒(α-Al2O3p)增强AlMg10合金复合材料,采用扫描电镜和EDS分析显微组织,并对无压渗透过程热力学研究,提出其反应加工机制:刚玉颗粒间隙内有限容积气氛(21%O2,79%N2),同熔融合金中铝(Al)镁(Mg)元素反应,形成固相,造成某种真空度,为无压渗透的驱动力。高温长时间条件下熔融基体AlMg10合金同刚玉颗粒和附加物的残留物发生化学反应。  相似文献   

16.
The durability of metals and ceramics in molten aluminum is a great concern in engineering applications such as die casting, containment of liquid metals and semi-solid processing. This paper summarizes related work along with the experimental results from our laboratory. Most of the important engineering materials are included. Ceramics such as graphite, aluminosilicate refractories, AlN, Al2O3, Si3N4, sialons are characterized as inert in molten aluminum and its alloys. The corrosion resistance of metals is generally poorer than that of inert ceramics, although the durability of titanium and niobium is relatively good. Factors affecting the material durability in molten aluminum, including the interfacial layers, dynamic agitation, surface coatings and grain size are also discussed.  相似文献   

17.
Aluminum nitride is of interest as a material for electrolysis cells in the aluminum industry due to its chemical stability when in contact with molten aluminum and/or cryolite-based salt melts. It has also been considered in combination with electrically conductive materials (i.e. AlN/Al-composite) as a material for drained cathode systems in Hall-Heroult processes. Knowledge of the interfacial properties of AlN in contact with molten aluminum and/or cryolite-based melts is therefore important. This paper reports observations of the wettability of AlN by aluminum under salt cover at high temperature using an X-ray technique. Results obtained in this work combined with previously published data are used for the assessment of the work of adhesion of molten aluminum on AlN under vacuum as well as under a cryolitic salt. Scanning electron microscopy examination of metallographic sections was used to confirm the nature of the interfaces. The measured contact angle between AlN and molten aluminum beneath a salt cover at 850 °C is 136° demonstrating the non-wettability of AlN by liquid aluminum under these conditions. The work of adhesion of molten aluminum on AlN is higher under vacuum than under salt. Previously published data allowed the determination of the interfacial properties between liquid aluminum and AlN under a salt cover. The interfacial energy between molten aluminum and salt is 773 mN/m at 850 °C. The work of adhesion of aluminum on AlN is 217 and 1322 mN/m under salt and under vacuum, respectively.  相似文献   

18.
The development of a proper processing method for the fabrication TiB2‐based wettable cathodes for aluminum electrolysis has been challenging for more than half a century. In this work, TiB2‐based ceramics were consolidated via pressureless sintering using Ti, Fe, and Ti–Fe additives. The microstructure, physical and mechanical properties as well as the interaction and the stability of the material in liquid aluminum were investigated. It was shown that specimens sintered with a Ti–Fe additive have excellent stability in liquid aluminum as the solid TiB2 skeleton maintained its integrity and strength after 5 days of exposure in liquid aluminum at 960 °C. Transmission electron microscopy analysis revealed that the formation of inter‐particle bridges of pure TiB2 is responsible for the good resistance of the material in molten aluminum. A sintering mechanism was proposed for the consolidation of TiB2 with a Ti–Fe additive. TiB2‐based ceramic sintered with a Ti–Fe alloy is suggested as a potentially reliable material for application as wettable cathode for aluminum electrolysis.  相似文献   

19.
We investigate processing-microstructure relationships in the production of Al2O3 particle reinforced copper composites by solidification processing. We show that during production of the composites by gas-pressure infiltration of packed Al2O3 particle preforms with liquid Cu or with liquid Cu8wt%Al at either 1,150 or 1,300 °C, capillarity-driven transport of alumina can cause rounding of the Al2O3 particles. We use quantitative metallography to show that the extent of particle rounding increases markedly with temperature and with the initial aluminum concentration in the melt. An analysis of the thermodynamics and kinetics governing the transport of alumina in contact with molten copper, considering both interfacial and volume diffusion, leads to propose two mechanisms for the rounding effect, namely (i) variations in the equilibrium concentration of oxygen in the melt as affected by the initial aluminum concentration, or (ii) segregation of aluminum to the interface with the ceramic.  相似文献   

20.
针对离心渗铸板材工艺中金属铝熔液在旋转的Al2O3预型体内的充型过程,考虑离心惯性力对金属铝熔液的瞬态固化与再熔过程的影响,研究了伴随有瞬态固化和再熔现象的流场温度分布以及熔融区长度和固化率瞬态变化规律,推导了渗透界面和再熔界面移动速度计算公式,建立了界面速度与温度的耦合关系。结果表明:当Al2O3颗粒预热温度低于铝熔化温度时,渗透过程出现了瞬态固化和再熔现象,液固共熔区随渗透过程不断向前推进,共熔区长度和固化率随渗透过程而增长。随着孔隙率和转速的减小,共熔区内固化率提高,渗透前沿和再熔前沿界面移动速度减小。但孔隙率的减小使两种界面移动速度差值增大,液固共熔区长度增长;而转速的减小使两种界面移动速度差值缩小,液固共熔区长度缩短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号