共查询到20条相似文献,搜索用时 31 毫秒
1.
识别正确率和抗噪性能固然是说话人识别的研究重点,但识别响应速度也是决定系统实用化的关键所在.本文成功地提出了基于说话人分类技术的分级说话人辨识方法,极大地提高了系统运行速度,随着注册说话人数的增多,较之传统的说话人辨识方法,其优势更加明显.同时在说话人确认中,该方法的使用,进一步提高了确认的正确率,有效地降低了错误接受和错误拒绝率.本文提出的可信度打分方法,也一定程度上改进了系统的性能.实验表明:基于说话人分类技术的说话人辨识方法使系统的运行速度平均提高了3.5倍,对说话人确认等误识率和最小误识率平均下降了53.75%. 相似文献
2.
Woo‐Yong Choi Dosung Ahn Sung Bum Pan Kyo Il Chung Yongwha Chung Sang‐Hwa Chung 《ETRI Journal》2006,28(3):320-328
Using biometrics to verify a person's identity has several advantages over the present practice of personal identification numbers (PINs) and passwords. To gain maximum security in a verification system using biometrics, the computation of the verification as well as the storing of the biometric pattern has to take place in a smart card. However, there is an open issue of integrating biometrics into a smart card because of its limited resources (processing power and memory space). In this paper, we propose a speaker verification algorithm using a support vector machine (SVM) with a very few features, and implemented it on a 32‐bit smart card. The proposed algorithm can reduce the required memory space by a factor of more than 100 and can be executed in real‐time. Also, we propose a hardware design for the algorithm on a field‐programmable gate array (FPGA)‐based platform. Based on the experimental results, our SVM solution can provide superior performance over typical speaker verification solutions. Furthermore, our FPGA‐based solution can achieve a speed‐up of 50 times over a software‐based solution. 相似文献
3.
4.
5.
6.
7.
We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable‐feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable‐feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable‐feature selection achieves better performance than the conventional feature recombination system with reliable‐feature selection. 相似文献
8.
9.
本征音子说话人自适应算法在自适应数据量充足时可以取得很好的自适应效果,但在自适应数据量不足时会出现严重的过拟合现象。为此该文提出一种基于本征音子说话人子空间的说话人自适应算法来克服这一问题。首先给出基于隐马尔可夫模型-高斯混合模型(HMM-GMM)的语音识别系统中本征音子说话人自适应的基本原理。其次通过引入说话人子空间对不同说话人的本征音子矩阵间的相关性信息进行建模;然后通过估计说话人相关坐标矢量得到一种新的本征音子说话人子空间自适应算法。最后将本征音子说话人子空间自适应算法与传统说话人子空间自适应算法进行了对比。基于微软语料库的汉语连续语音识别实验表明,与本征音子说话人自适应算法相比,该算法在自适应数据量极少时能大幅提升性能,较好地克服过拟合现象。与本征音自适应算法相比,该算法以较小的性能牺牲代价获得了更低的空间复杂度而更具实用性。 相似文献
10.
提出了一种基于压缩感知(CS)的说话人识别算法以及在ARM系统中的实现,首先,介绍压缩感知理论框架,提出说话人识别可以与压缩感知理论相结合的依据;其次,提出基于压缩感知的说话人识别算法的基本方法,即建立说话人语音特征数据库和基追踪匹配得到最大均值系数,其中,语音特征向量由GMM均值超向量核算法得到,大量实验数据表明,该方法一定程度上提高了识别率,并且在说话人集合较大的情况下识别效果较好。 相似文献
11.
Fernando Huenupán Néstor Becerra Yoma Claudio Garretón Carlos Molina 《ETRI Journal》2010,32(3):395-405
A novel multiclassifier system (MCS) strategy is proposed and applied to a text‐dependent speaker verification task. The presented scheme optimizes the linear combination of classifiers on an on‐line basis. In contrast to ordinary MCS approaches, neither a priori distributions nor pre‐tuned parameters are required. The idea is to improve the most accurate classifier by making use of the incremental information provided by the second classifier. The on‐line multiclassifier optimization approach is applicable to any pattern recognition problem. The proposed method needs neither a priori distributions nor pre‐estimated weights, and does not make use of any consideration about training/testing matching conditions. Results with Yoho database show that the presented approach can lead to reductions in equal error rate as high as 28%, when compared with the most accurate classifier, and 11% against a standard method for the optimization of linear combination of classifiers. 相似文献
12.
13.
Benoît Maison Chalapathy Neti Andrew Senior 《The Journal of VLSI Signal Processing》2001,29(1-2):71-79
Audio-based speaker identification degrades severely when there is a mismatch between training and test conditions due either to channel or to noise. In this paper, we explore various techniques to combine video based speaker identification with audio-based speaker identification to improve the performance under mismatched conditions. Specifically, we explore techniques to optimally determine the relative weights of the independent decisions based on audio and video to achieve the best combination. Experiments on video broadcast news data show that significant improvements can be achieved by the fusion in acoustically degraded conditions. 相似文献
14.
论文研究了小波包变换及LPCC参数的提取,在此基础上,提取了基于小波包变换和LPCC的新参数(DWT-LPCC),并基于GMM系统进行说话人识别实验。结果表明,相对于LPCC参数,DWT-LPCC参数大大提高了噪声环境下的说话人识别率。 相似文献
15.
This paper concerns robust and reliable speaker model training for text‐independent speaker verification. The baseline speaker modeling approach is the Gaussian mixture model (GMM). In text‐independent speaker verification, the amount of speech data may be different for speakers. However, we still wish the modeling approach to perform equally well for all speakers. Besides, the modeling technique must be least vulnerable against unseen data. A traditional approach for GMM training is expectation maximization (EM) method, which is known for its overfitting problem and its weakness in handling insufficient training data. To tackle these problems, variational approximation is proposed. Variational approaches are known to be robust against overtraining and data insufficiency. We evaluated the proposed approach on two different databases, namely KING and TFarsdat. The experiments show that the proposed approach improves the performance on TFarsdat and KING databases by 0.56% and 4.81%, respectively. Also, the experiments show that the variationally optimized GMM is more robust against noise and the verification error rate in noisy environments for TFarsdat dataset decreases by 1.52%. 相似文献
16.
17.
谢建平 《微电子学与计算机》2006,23(6):220-222,226
文章运用TMS320C5416实现了说话人自动识别系统。提出了一种新的说话人识别方法。该方法综合了VQ和GMM的优点。通过用VQ误差尺度取代传统GMM的输出概率函数。减少了建模时对训练数据量的要求,提高了识别速度。实验结果证明该方法是有效的。 相似文献
18.
基于小波包分析特征参数的说话人识别系统 总被引:5,自引:0,他引:5
介绍了说话人识别系统,研究MFCC提取原理与小波包分析的基础上,提出了一种基于小波包分析的新型语音特征参数WPDC。在研究了WPDC提取算法的基础上,建立了一个神经网络模型的说话人识别系统,实验比较了MFCC与WPDC的识别性能,验证WPDC了具有很高的识别率,是一种很好的语音特征参数。 相似文献
19.
为了挖掘说话人识别领域中人脸和语音的相关性,该文设计多模态生成对抗网络(GAN),将人脸特征和语音特征映射到联系更加紧密的公共空间,随后利用3元组损失对两个模态的联系进一步约束,拉近相同个体跨模态样本的特征距离,拉远不同个体跨模态样本的特征距离。最后通过计算公共空间特征的跨模态余弦距离判断人脸和语音是否匹配,并使用Softmax识别说话人身份。实验结果表明,该方法能有效地提升说话人识别准确率。
相似文献20.
稀疏表示已成功应用于说话人识别领域。在稀疏表示中,构造好的字典起着重要的作用。该文将Fisher准则的结构化字典学习方法引入说话人识别系统。在判别字典的学习过程中,每一个字典对应一个类标签,因此同类别训练样本的重构误差较小。同时,保证训练样本的稀疏编码系数类内误差最小,类间误差最大。在NIST SRE 2003数据库上,实验结果表明该算法得到的等错误率是7.62%,基于余弦距离打分的i-vector的等错误率是6.7%。当两个系统融合后,得到的等错误率是5.07%。 相似文献