首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel acceptor–donor–acceptor (A–D–A) type electron acceptor 6TIC‐4F with terthieno[3,2‐b]thiophene (6T) as the core unit is rationally designed and synthesized, which exhibits an extraordinarily narrow bandgap (≈1.24 eV) and strong absorption between 650 and 1000 nm. X‐ray crystallographic analysis reveals that it has unique intermolecular π–π stacking. The solar cells based on the as‐cast poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))]) (PBDB‐T): 6TIC‐4F binary blends exhibit an excellent power conversion efficiency (PCE) of 11.14% with a high JSC of 23.00 mA cm?2, and a high fill factor of 0.67, which represents one of the best PCE values for low bandgap (Eg < 1.3 eV)–based organic solar cells.  相似文献   

2.
The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2 V?1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.  相似文献   

3.
Newly synthesized thiophene (T) and benzothiadiazole (B) co‐oligomers of different size, alternation motifs, and alkyl substitution types are reported. Combined spectroscopic data, electrochemical analysis, and theoretical calculations show that the insertion of a single electron‐deficient B unit into the aromatic backbone strongly affects the LUMO energy level. The insertion of additional B units has only a minor effect on the electronic properties. Cast films of oligomers with two alternated B rings (B–T–B inner core) display crystalline order. Bottom‐contact FETs based on films cast on bare SiO2 show hole‐charge mobilities of 1 × 10?3–5 × 10?3 cm2 V?1s?1 and Ion/Ioff ratios of 105–106. Solution‐cast films of cyclohexyl‐substituted compounds are amorphous and do not show FET behavior. However, the lack of order observed in these films can be overcome by nanorubbing and unconventional wet lithography, which allow for fine control of structural order in thin deposits.  相似文献   

4.
A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

5.
A series of compounds from the tetraceno[2,3‐b]thiophene and the anthra[2,3‐b]thiophene family of semiconducting molecules has been made. Specifically, synthetic routes to functionalize the parent molecules with bromo and then hexyl groups are shown. The bromo‐ and hexyl‐functionalized tetraceno[2,3‐b]thiophene and anthra[2,3‐b]thiophene were characterized in the top‐contact thin‐film transistor (TFT) geometry. They give high mobilities, ranging from 0.12 cm2 V?1 s?1 for αn‐hexylanthra[2,3‐ b]thiophene to as high as 0.85 cm2 V?1 s?1 for α‐bromotetraceno[2,3‐b]thiophene. Notably, grain size increases, going from the shorter anthra[2,3‐b]thiophene core to the longer tetraceno[2,3‐b]thiophene core, with a corresponding increase in mobility. The transition from undesirable 3D to desirable 2D thin‐film growth is explained by the increase in length of the molecule, in this case by one benzene ring, which results in an increase in intralayer interactions relative to interlayer interactions.  相似文献   

6.
Despite the rapid development of nonfullerene acceptors (NFAs), the fundamental understanding on the relationship between NFA molecular architecture, morphology, and device performance is still lacking. Herein, poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) is used as the donor polymer to compare an NFA with a 3D architecture (SF‐PDI4) to a well‐studied NFA with a linear acceptor–donor–acceptor (A–D–A) architecture (ITIC). The data suggest that the NFA ITIC with a linear molecular structure shows a better device performance due to an increase in short‐circuit current ( Jsc) and fill factor (FF) compared to the 3D SF‐PDI4. The charge generation dynamics measured by femtosecond transient absorption spectroscopy (TAS) reveals that the exciton dissociation process in the PTB7‐Th:ITIC films is highly efficient. In addition, the PTB7‐Th:ITIC blend shows a higher electron mobility and lower energetic disorder compared to the PTB7‐Th:SF‐PDI4 blend, leading to higher values of Jsc and FF. The compositional sensitive resonant soft X‐ray scattering (R‐SoXS) results indicate that ITIC molecules form more pure domains with reduced domain spacing, resulting in more efficient charge transport compared with the SF‐PDI4 blend. It is proposed that both the molecular structure and the corresponding morphology of ITIC play a vital role for the good solar cell device performance.  相似文献   

7.
A series of new organic semiconductors for organic thin‐film transistors using dithieno[3,2‐b:2′,3′‐d]thiophene as the core have been synthesized. In work reported by Liu, Zhu, and co‐workers on p. 426, the phenyl‐substituted compound exhibited a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. Weekly shelf‐life tests of the transistors based on the bis(diphenyl)‐substituted thiophene under ambient conditions showed that the mobility was almost unchanged after more than two months, demonstrating potential for applications in future organic electronics. A series of new organic semiconductors for organic thin‐film transistors (OTFTs) using dithieno[3,2‐b:2′,3′‐d]thiophene as the core are synthesized. Their electronic and optical properties are investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), UV‐vis and photoluminescence spectroscopies, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The compounds exhibit an excellent field‐effect performance with a high mobility of 0.42 cm2 V–1 s–1 and an on/off ratio of 5 × 106. XRD patterns reveal these films, grown by vacuum deposition, to be highly crystalline, and SEM reveals well‐interconnected, microcrystalline domains in these films at room temperature. TGA and DSC demonstrate that the phenyl‐substituted compounds possess excellent thermal stability. Furthermore, weekly shelf‐life tests (under ambient conditions) of the OTFTs based on the phenyl‐substituted compounds show that the mobility for the bis(diphenyl)‐substituted thiophene was almost unchanged for more than two months, indicating a high environmental stability.  相似文献   

8.
Carrier transport characteristics in organic field‐effect transistors were compared for vapor‐deposited thin films and epitaxially grown needle crystals of biphenyl‐capped thiophene oligomers with different lengths of the thiophene units. The hole mobility of the thin films deposited on Si/SiO2 substrate was improved up to 0.17 cm2 V–1 s–1 by formation of platelet crystallites with a domain size of a few micrometer. The hole transport in the epitaxial needle crystals grown on the KCl surface depended upon the molecular orientation with respect to the channel direction. The orientation of the needle axis bridging over the source–drain electrodes increased the mobility since π‐electronic interaction through the parallel stack of the linear molecules enhanced the carrier transport along the needle. The deposition condition and electronic energy levels of the oligomers, depending on the length of the thiophene units, also affected their characteristics.  相似文献   

9.
Poly(4,8‐didodecyl‐2,6‐bis‐(3‐methylthiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene) self‐assembled on appropriate substrates from solution and formed highly structured thin films at low temperatures. As an as‐prepared thin‐film semiconductor without thermal annealing, it exhibited excellent field‐effect transistor properties with mobility of ~ 0.15 cm2 V–1 s–1 in thin‐film transistors.  相似文献   

10.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

11.
Two series of oligothiophenes (OThs), NaTn and TNTn (n = 2–6 represents the number of thiophene rings), end‐capped with naphthyl and thionaphthyl units have been synthesized by means of Stille coupling. Their thermal properties, optical properties, single crystal structures, and organic field‐effect transistor performance have been characterized. All oligomers display great thermal stability and crystallinity. The crystallographic structures of NaT2 , NaT3 , TNT2 , and TNT3 have been determined. The crystals of NaT2 and NaT3 are monoclinic with space group P21/C, while those of TNT2 and TNT3 are triclinic and orthorhombic with space groups P and P212121, respectively. All oligomers adopt the well‐known herringbone packing‐mode in crystals with packing parameters dependent on the structure of the end‐capping units and the number of thiophene rings. The shorter intermolecular distance in NaT3 compared to NaT2 indicates that the intermolecular interaction principally increases with increasing molecular length. X‐ray diffraction and atomic force microscopy (AFM) characterization indicate that the NaTn oligomers can form films with better morphology and high molecular order than TNTn oligomers with the same number of thiophene rings. The NaTn oligomers exhibit mobilities that are much higher than those for TNTn oligomers (0.028–0.39 cm2 V–1 s–1 versus 0.010–0.055 cm2 V–1 s–1, respectively). In particular, the NaTn oligomers with n = 4–6 all show a mobility higher than 0.1 cm2 V–1 s–1. This device performance is among the best in aryl end‐capped OThs, and indicates that naphthyl is an effectual building block for designing high‐performance organic semiconducting materials.  相似文献   

12.
Well‐defined small molecule (SM) donors can be used as alternatives to π‐conjugated polymers in bulk‐heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self‐assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π‐extended backbone of benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin‐films, and (iii) charge transport in BHJ solar cells. In these systems ( SM1‐3 ), it is found that 6,7‐difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2‐b:4,5‐b′]dithiophene (BDT) unit yield a lower‐bandgap analogue ( SM1 ) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H‐1H DQ‐SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end‐group SM3 possess distinct self‐assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively).  相似文献   

13.
A series of 2,8‐disubstituted dibenzothiophene and 2,8‐disubstituted dibenzothiophene‐S,S‐dioxide derivatives containing quinoxaline and pyrazine moieties are synthesized via three key steps: i) palladium‐catalyzed Sonogashira coupling reaction to form dialkynes; ii) conversion of the dialkynes to diones; and iii) condensation of the diones with diamines. Single‐crystal characterization of 2,8‐di(6,7‐dimethyl‐3‐phenyl‐2‐quinoxalinyl)‐5H‐5λ6‐dibenzo[b,d]thiophene‐5,5‐dione indicates a triclinic crystal structure with space group P1 and a non‐coplanar structure. These new materials are amorphous, with glass‐transition temperatures ranging from 132 to 194 °C. The compounds (Cpd) exhibit high electron mobilities and serve as effective electron‐transport materials for organic light‐emitting devices. Double‐layer devices are fabricated with the structure indium tin oxide (ITO)/Qn/Cpd/LiF/Al, where yellow‐emitting 2,3‐bis[4‐(N‐phenyl‐9‐ethyl‐3‐carbazolylamino)phenyl]quinoxaline (Qn) serves as the emitting layer. An external quantum efficiency of 1.41 %, a power efficiency of 4.94 lm W–1, and a current efficiency of 1.62 cd A–1 are achieved at a current density of 100 mA cm–2.  相似文献   

14.
Silaindacenodithiophene is copolymerized with benzo[c][1,2,5]thiadiazole ( BT ) and 4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole ( DTBT ), respectively their fluorinated counter parts 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( 2FBT ) and 5,6‐difluoro‐4,7‐di(thiophen‐2‐yl) benzo[c][1,2,5]thiadiazole ( 2FDTBT ). The influence of the thienyl spacers and fluorine atoms on molecular packing and active layer morphology is investigated with regard to device performances. bulk heterojunction (BHJ) solar cells based on silaindacenodithiophene donor‐acceptor polymers achieved PCE's of 4.5% and hole mobilities of as high as 0.28 cm2/(V s) are achieved in an organic field‐effect transistor (OFET).  相似文献   

15.
Block copolymers of poly(pentafluorostyrene) (PFS) and poly(methyl methacrylate) (PMMA) (PFS‐b‐PMMA) have been synthesized using atom transfer radical polymerization (ATRP). Then, nanoporous fluoropolymer films have been prepared via selective UV decomposition of the PMMA blocks in the PFS‐b‐PMMA copolymer films. The chemical composition and structure of the PFS homopolymers and copolymers have been characterized using nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), X‐ray photoelectron spectroscopy (XPS), time‐of‐flight secondary‐ion mass spectrometry (ToF‐SIMS), and molecular‐weight measurements. The cross‐sectional and surface morphologies of the PFS‐b‐PMMA copolymer films before and after selective UV decomposition of the PMMA blocks have been studied using field‐emission scanning electron microscopy (FESEM). The nanoporous fluoropolymer films with pore sizes in the range 30–50 nm and porosity in the range 15–40 % have been obtained from the PFS‐b‐PMMA copolymers of different PMMA content. Dielectric constants approaching 1.8 have been achieved in the nanoporous fluoropolymer films which contain almost completely decomposed PMMA blocks.  相似文献   

16.
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV.  相似文献   

17.
The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( BTDT ) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( P‐BTDT ), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene ( Bp‐BTDT ), 2 ‐naphthalenyl benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( Np‐BTDT ), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( BBTDT ), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT , the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.  相似文献   

18.
Red/near‐infrared dyes are highly demanded for biological applications but most of them are far from satisfactory. In this work, a series of red/near‐infrared fluorophores based on electron‐withdrawing benzo[1,2‐b:4,5‐b′]dithiophene 1,1,5,5‐tetraoxide (BDTO) are synthesized and characterized. They possess both aggregation‐induced emission, and hybridized local and charge‐transfer characteristics. Crystallographic, spectroscopic, electrochemical and computational results reveal that the oxidation of benzo[1,2‐b:4,5‐b′]dithiophene to BDTO can endow the fluorophores with greatly red‐shifted emission, enhanced emission efficiency, reduced energy levels, enlarged two‐photon absorption cross section, and increased reactive oxygen species generation efficiency. The nanoparticles fabricated with a near‐infrared fluorophore TPA‐BDTO show high photostability and biocompatibility with good performance in targeted photodynamic ablation of cancer cells and two‐photon fluorescence imaging of intravital mouse brain vasculature.  相似文献   

19.
A synergistic approach combining new material design and interfacial engineering of devices is adopted to produce high efficiency inverted solar cells. Two new polymers, based on an indacenodithieno[3,2‐b]thiophene‐difluorobenzothiadiazole (PIDTT‐DFBT) donor–acceptor (D–A) polymer, are produced by incorporating either an alkyl thiophene (PIDTT‐DFBT‐T) or alkyl thieno[3,2‐b]thiophene (PIDTT‐DFBT‐TT) π‐bridge as spacer. Although the PIDTT‐DFBT‐TT polymer exhibits decreased absorption at longer wavelengths and increased absorption at higher energy wavelengths, it shows higher power conversion efficiencies in devices. In contrast, the thiophene bridged PIDTT‐DFBT‐T shows a similar change in its absorption spectrum, but its low molecular weight leads to reduced hole mobilities and performance in photovoltaic cells. Inverted solar cells based on PIDTT‐DFBT‐TT are explored by modifying the electron‐transporting ZnO layer with a fullerene self‐assembled monolayer and the MoO3 hole‐transporting layer with graphene oxide. This leads to power conversion efficiencies as high as 7.3% in inverted cells. PIDTT‐DFBT‐TT's characteristic strong short wavelength absorption and high efficiency suggests it is a good candidate as a wide band gap material for tandem solar cells.  相似文献   

20.
A solution‐processable electrochromic (EC) polymer, poly(4,4‐dioctyl‐cyclopenta[2,1‐b:3,4‐b′]‐dithiophene) (PDOCPDT) is prepared by means of chemical oxidative polymerization of the corresponding monomer. The UV‐vis spectrum of the spin‐coated PDOCPDT film displays an absorption maximum of 580 nm. Although the polymer is deep blue in its neutral state, it turns to transparent bluish after being oxidized. PDOCPDT film (thickness 120 nm) exhibits high coloration efficiency (CE)—as high as 932 C cm–2 at 580 nm, low response time (0.75 s), high optical density (0.75 at 580 nm), and high‐level stability for long term switch (it switches repetitively 1000 times with less than 8 % contrast loss). The electrochemical stability and redox potentials of PDOCPDT films are independent of film thickness (50–180 nm) and active area (up to 2 cm × 2 cm). Nevertheless, optical contrast increases as the film thickness increases, although the CE and response time changes irregularly with the film thickness. The good EC properties combined with the easy film fabrication process make PDOCPDT a notable candidate for application in EC devices. (ECDs) A simple transmissive‐type ECD with good CE using PDOCPDT film as an active layer is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号