共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
模糊推理耦合轮廓误差补偿方法的研究 总被引:5,自引:0,他引:5
提出模糊推理耦合轮廓误差方法的原理,算法及实现方法,该法能在不增加硬件,不改变轮廓系统各进给出轴位置环的情况下,根据系统的轮廓误差,通过糊揄和自学习校正,向各轴提供附加补偿作用,百而提高系统的轮廓精度,针对二轴轮廓系统的闭环数字仿真和实验结果,证明该方法的可行性和有效性。 相似文献
3.
在交叉耦合控制中,轮廓误差估计公式不仅用于估计轮廓误差大小,而且用于确定交叉耦合系数。估计公式的准确性直接影响轮廓控制精度,传统公式在大曲率位置存在明显估计误差。针对平面自由曲线的轮廓误差估计,研究点-曲线距离函数的微分特性,利用距离函数的Taylor展开提出高精度二阶估计方法,并指出基于密切圆近似的传统二阶方法在象限切换时存在的计算问题,同时对传统公式进行修正。在此基础上设计综合位置闭环反馈和交叉耦合控制器的轮廓跟踪控制器,并结合NURBS曲线进行两轴控制试验。试验结果表明:所提出的二阶方法相比于传统公式轮廓误差估计精度更高;基于所提出的二阶方法和传统公式设计的交叉耦合控制器,前者相比于后者可以显著提高轮廓控制精度。 相似文献
4.
为提高直角坐标机器人控制精度,结合迭代学习控制和交叉耦合控制设计了一种轮廓误差补偿算法。在单轴数学模型的基础上,搭建了直角坐标机器人轮廓误差模型。根据不同控制方法的特点,结合反馈控制、单轴迭代学习控制、双轴交叉耦合控制和轮廓误差迭代学习控制设计了一种控制器。直角坐标机器人的控制系统以ARM和FPGA为核心,其中,ARM主要用于传感器信号采集、上位机通信、故障检测和机器人运动轨迹规划等;FPGA则可实现伺服电机的控制。实验结果表明:轮廓误差平均值、最大值和标准偏差均大幅降低;迭代学习交叉耦合控制能够大幅降低轮廓误差,有效提高直角坐标机器人运动精度。 相似文献
5.
6.
在高精密轮廓加工中,线性轮廓误差控制精度是非常重要的指标,它决定了最终产品的加工精度。在建立基于齿隙的线性轮廓误差模型的基础上,利用众所周知的交叉耦合控制,提出了一种新的独立轮廓误差控制(Independent Contour Error Control,ICEC)策略,即驱动轴之间不需要任何交叉进给信号就能够减少线性轮廓误差。仿真的结果表明所提出的控制方案是有效的,在线性和圆形轮廓的双轴驱动系统上也得到证明,能够明显地提高轮廓误差控制精度。 相似文献
7.
五轴数控机床在加工过程中不可避免会产生误差,为了进一步提高五轴数控机床的加工精度,本文提出了五轴数控机床轮廓误差的预补偿技术,首先分析了轮廓误差的产生原因和组成要素,然后提出了跟踪误差的预测方法并建立预测模型,接着对于轮廓误差的预测进行建模,最后根据五轴机床加工过程中给出的路径仿真得出了轮廓误差未补偿和补偿的对比,结果表明了经过轮廓误差的预补偿,能够很大程度上减小加工过程中出现的轮廓误差,进一步证明了本文方法的有效性。 相似文献
8.
9.
10.
11.
12.
BP神经网络补偿热变形误差的研究 总被引:4,自引:0,他引:4
在精密加工中,由于热变形引起的误差占整个系统误差的40%-60%[1],这说明对热变形进行深入研究和找出其规律并提出相应的补偿措施是十分必要的。本文是以CK616-1简易数控车床为实验对象,在对其热误差分析的基础上进行热误差建模,并结合改进的BP神经网络给出了具体实现的方法,对提高机床的加工精度有着极其重要的意义。 相似文献
13.
14.
15.
基于时间序列预测技术的数控机床轮廓误差实时补偿方法研究 总被引:2,自引:0,他引:2
分析了现有数控机床轮廓误差控制方法的优势与不足,提出了基于时间序列预测技术的轮廓误差实时补偿方法.基本思想是通过对伺服跟踪误差的实时检测与预报,动态控制插补过程,以有效消除由伺服跟踪误差引起的合成轨迹误差.仿真结果表明,文章提出的这种方法可以有效地减小数控机床轮廓误差. 相似文献
16.
基于RBF神经网络的曲面加工误差补偿 总被引:1,自引:0,他引:1
在自由曲面数控加工中,计算误差和机床误差都会带来加工工件的形状误差。形状误差在三维空间分布是无规律的,无法用普通的数学函数表达,导致很难实施误差补偿加工。为了建立误差补偿模型,本文提出了采用RBF(Radial Basis Functions)神经网络逼近误差的三维分布函数。测试结果表明,RBF网络模型具有较好的推广能力,它与传统的BP神经网络模型相比较。RBF网络具有更高的精度、更好的泛化能力和更快的收敛速度。通过修改后的数控NC指令驱动数控机床,使刀具中心偏离一个误差函数求出误差值,实现误差补偿。 相似文献
17.
18.
在分析国内外磨削加工误差分析与补偿研究现状基础上,针对X轴和C轴两轴联动的凸轮轴数控磨削的轮廓误差提出一种轮廓误差分析和补偿策略,以提高凸轮磨削加工精度。基于凸轮轴数控磨削的X-C联动运动模型,推导了由凸轮升程表到磨削加工位移表的数学模型;指出凸轮升程与轮廓的误差变化规律在趋势上具有一致性。基于最小二乘多项式方法对多次磨削加工实验的凸轮升程误差进行一系列拟合处理,得到稳定的、可重复的凸轮升程预测误差;将升程预测误差按一定比例反向叠加到理论升程表中,采用最小二乘多项式法进行光顺,得到光顺的虚拟升程表;利用虚拟升程表对同类型凸轮轴进行磨削加工实验。实验结果表明,砂轮架速度和加速度在机床伺服响应范围之内,凸轮最大升程误差与最大相邻误差降低,凸轮轮廓表面粗糙度值满足加工要求,从而证明该误差分析和补偿方法是正确可行的。 相似文献
19.
称重传感器、秤盘机械结构的非线性环节影响了电子秤称重结果的准确度。本文分析了电子秤的非线性误差来源与误差机理。在此基础上利用径向基函数神经网络(RBFNN)构建了一种电子秤非线性误差补偿网络,完成了电子秤的非线性校正。经现场检测表明。采用这种方法补偿后的电子秤称重误差小于国家标准《JJG555—1996非自动秤通用检定规程》规定的中级秤允许误差。提高了称重准确度。 相似文献
20.
宏/微双驱动平台是一种用于微切削加工的高精度切削平台,其定位精度受多种因素影响。为提高宏/微双驱动定位运动平台的定位精度,提出基于BP神经网络进行宏/微双驱动运动平台定位误差预测的方法。测量运动平台的定位精度,从而建立BP神经网络误差预测模型,并运用该模型对宏/微双驱动运动平台进行定位误差预测试验,最终证明BP神经网络定位误差预测模型精度高、抗变换性能好,适用于对宏/微双驱动运动平台的定位误差进行误差预测及补偿,使得宏/微双驱动平台达到10nm级精度设计要求。 相似文献