首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large amount of one‐dimensional (1D) Ce‐doped ZnO nanostructures with different morphologies has been successfully synthesized by annealing a polymeric precursor at various temperatures. The evolution of the morphologies and microstructures was investigated by field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution TEM (HRTEM). The results show that the morphologies vary drastically with increasing synthesis temperature and the photoluminescence (PL) of the products depends on both the synthesis and measurement temperatures. The CeO layer forms first and becomes a catalytic center for the ZnO growth. At a synthesis temperature lower than the boiling point of Zn, Zn and O atoms can stack epitaxially along the CeO catalytic layer and form a bicrystal nanobelt‐like structure with a trapezoid‐like end and a concave growth fault center. At a synthesis temperature higher than the boiling point of Zn, however, nanowires with an incommensurately modulated superstructure are obtained due to the high reaction rate and the formation of a periodic separation of the CeO layer. As for the room‐temperature PL of ZnO, the incorporation of donor Ce leads to the disappearance of the green band and the appearance of a purplish‐blue emission peak, whose position shifts towards the red and whose intensity decreases with increasing synthesis temperature. Analysis of this temperature‐dependent luminescence indicates that the purplish‐blue emission of nanobelts prepared at 850 °C originates from a donor‐bound exciton emission, and, contrary to the nanowires, it undergoes a change from an emission of the electron–hole plasma (EHP) to an emission of the donor‐bound exciton with decreasing measurement temperature.  相似文献   

2.
ZnS:M2+ (M = Mn, Co, or Cu) single‐crystal one‐dimensional nanostructures have been prepared via a simple halide‐transport chemical vapor deposition (HTCVD) process at a relatively low temperature. The obvious phase transition suggests that doping with Mn favors the formation of the hexagonal phase at a relative low temperature. The strong photoluminescence from blue to green and the yellow–orange emission, which was caused by the doping of various elements in ZnS nanowires and nanobelts, suggests possible applications of the one‐dimensional nanostructures in nanoscale optoelectronic devices.  相似文献   

3.
The forces between mica surfaces confining solutions of spherical and rod‐shaped ZnS nanoparticles (diameter ca. 5 nm) coated with hexadecylamine or octadecylamine surfactant in dodecane have been measured in the absence and after the introduction of trace amounts of water. Initially, or at very low water content, the water molecules cause the nanoparticles to aggregate and adsorb on the hydrophilic mica surfaces, resulting in a long‐range exponentially decaying repulsive force between the surfaces. After longer times (> 20 h), water bridges nucleate and grow between the nanoparticles and mica surfaces, and attractive capillary forces then cause a long‐range attraction and a strong (short‐range) adhesion. It is found, as has previously been observed in nonaqueous bulk colloidal systems, that even trace amounts of water have a profound effect on the interactions and structure of nanoparticle assemblies in thin films, which in turn affect their physical properties. These effects should be considered in the design of thin‐film processing methodologies.  相似文献   

4.
We report on the synthesis of wurtzite ZnS micrometer‐sized diskettes (including those lined up with ZnS nanowires) and ZnS nanoribbon arrays. Using ZnS powder as a source material, a vapor–solid growth based on a two‐stage temperature‐controllable thermal evaporation and condensation process is realized. Significant enhancement of luminescence compared to the ZnS source material is observed from these ZnS micro‐ and nanometer‐sized structures. The structures may serve as ideal model systems in the nano‐ to micrometer range for studying the optical and electronic properties of ZnS material. They can also be treated as prospective building blocks of two‐ and/or three‐dimensional arrays and are promising candidates for fabricating novel electronic and optoelectronic devices.  相似文献   

5.
Novel hierarchical ZnO nanostructures, porous ZnO nanobelts, and nanoparticle chains are prepared from a precursor of synthetic bilayered basic zinc acetate (BLBZA) nanobelts. BLBZA nanobelts are obtained by a simple synthetic route under mild conditions. X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, and thermal analysis are used to characterize the BLBZA nanobelts and ZnO nanostructures. The obtained BLBZA precursor consists of a lamellar structure with two interlayer distances of 1.33 and 2.03 nm, exhibits a beltlike morphology, and has widths of 200 to 600 nm, thicknesses of 10 to 50 nm, and lengths of up to 50 μm. Refluxing an aqueous dispersion of BLBZA nanobelts at 120 °C for 12 h leads to the formation of well‐defined hierarchical ZnO nanostructures. The time‐dependent shape‐evolution process suggests that spindlelike ZnO particles form first, and then the ringlike nanosheets grow heterogeneously on the backbone of these spindles. In addition, calcination in air can remove ligand molecules and intercalated water molecules from BLBZA nanobelts, resulting in the formation of porous ZnO nanobelts and nanoparticle chains. The BLBZA nanobelts serve as templates during the transformation to form ZnO beltlike nanoparticle chains without morphological deformation. Photoluminescence results show that both the as‐synthesized hierarchical ZnO nanostructures and porous ZnO nanobelts show a narrow and sharp UV emission at 390 nm and a broad blue–green emission at above 466 nm when excited by UV light.  相似文献   

6.
A novel organometallic synthetic method has been developed for the preparation of crystalline ZnO nanoparticles of controlled size and shape. Isotropic nanoparticles with a mean size between 3 and 6 nm and nanorods with a mean diameter of 3–4 nm and length up to 120 nm have been obtained in this way. This synthetic method takes advantage of the exothermic reaction of the precursor Zn(c‐C6H11)2 ( 1 ) toward moisture and air and involves the presence of long‐alkyl‐chain amines as stabilizing ligands. The influence of the different experimental parameters (concentration, solvent, nature of the ligand, time, and temperature) on the size and shape of the ZnO nanoparticles has been studied, together with the mechanism of their formation, by NMR spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The nanoparticles prepared in this way can be dissolved in most of the common organic solvents, forming colloidal solutions. The surface state of the nanoparticles as well as the possibility of forming luminescent solutions from which regular monolayers can be deposited are also reported.  相似文献   

7.
Quasi‐aligned Eu2+‐doped wurtzite ZnS nanowires on Au‐coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [01 0] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitons, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co‐dopant Cl ions can serve not only as donors, producing a donor–acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long‐lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal‐field strength around Eu2+. As a result, not only have an enhanced Eu2+ 4f65d1–4f7 intra‐ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.  相似文献   

8.
Functional oxides are the fundamentals of smart devices. This article reviews novel nanostructures of functional oxides, including nanobelts, nanowires, nanosheets, and nanodiskettes, that have been synthesized in the authors’ laboratory. Among the group of ZnO, SnO2, In2O3, Ga2O3, CdO, and PbO2, which belong to different crystallographic systems and structures, a generic nanobelt structure has been synthesized. The nanobelts are single crystalline and dislocation‐free, and their surfaces are atomically flat. The oxides are semiconductors, and have been used for fabrication of nanodevices such as field‐effect transistors and gas sensors. Taking SnO2 and SnO as examples, other types of novel nanostructures are illustrated. Their growth, phase transformation, and stability are discussed. The nanobelts and related nanostructures are a unique group that is likely to have important applications in electronic, optical, sensor, and optoelectronic nanodevices.  相似文献   

9.
Preparation of coaxial (core–shell) CdS–ZnS and Cd1–xZnxS–ZnS nanowires has been achieved via a one‐step metal–organic chemical vapor deposition (MOCVD) process with co‐fed single‐source precursors of CdS and ZnS. Single‐source precursors of CdS and ZnS of sufficient reactivity difference were prepared and paired up to form coaxial nanostructures in a one‐step process. The sequential growth of ZnS on CdS nanowires was also conducted to demonstrate the necessity and advantages of the precursor co‐feeding practice for the formation of well‐defined coaxial nanostructures. The coaxial nanostructure was characterized and confirmed by high‐resolution transmission electron microscopy and corresponding energy dispersive X‐ray spectrometry analyses. The photoluminescence efficiencies of the resulting coaxial CdS–ZnS and Cd1–xZnxS–ZnS nanowires were significantly enhanced compared to those of the plain CdS and plain Cd1–xZnxS nanowires, respectively, owing to the effective passivation of the surface electronic states of the core materials by the ZnS shell.  相似文献   

10.
Although there has been significant progress in the fabrication and performance optimization of one‐dimensional nanostructure‐based photodetectors, it is still a challenge to develop an effective and low‐cost device with high performance characteristics, such as a high photocurrent/dark‐current ratio, photocurrent stability, and fast time response. Herein an efficient and low‐cost method to achieve high‐performance ‘visible‐blind’ microscale ZnS nanobelt‐based ultraviolet (UV)‐light sensors without using a lithography technique, by increasing the nanobelt surface areas exposed to light, is reported. The devices exhibit about 750 times enhancement of a photocurrent compared with individual nanobelt‐based sensors and an ultrafast time response. The photocurrent stability and time response to UV‐light do not change significantly when a channel distance is altered from 2 to 100 µm or the sensor environment changes from air to vacuum and different measurement temperatures (60 and 150 °C). The photoelectrical behaviors can be recovered well after returning the measurement conditions to air and room temperature again. The low cost and high performance of the resultant ZnS nanobelt photodetectors guarantee their highest potential for visible‐blind UV‐light sensors working in the UV‐A band.  相似文献   

11.
The attachment of water molecules to poly(vinylpyrrolidone) (PVP) is used in conjunction with the region‐selective distribution of PVP and water in a water/PVP/n‐pentanol system to confine reactions along the surface of PVP, thus achieving the highly shape‐selective synthesis of anisotropic Au nanostructures with controlled sizes and remarkable shapes such as regular octahedrons, triangles, rods, dumbbells, belts, and hexagons. The IR absorption spectra of the Au nanoparticles confirm that the nanoparticles are formed around PVP, and corroborate the adsorption of PVP on Au. The size, shape, and plasmon resonance of the Au nanoparticles can be readily tuned by modifying the adsorption behavior and/or the reducing ability of PVP by adjusting the relative amounts of PVP and water, directly adding gold seeds, or changing the stirring conditions in the reaction mixture. The obtained highly pure anisotropic Au nanostructures and the synthesis method demonstrated here enable us to study distinct nanostructures to search for novel physicochemical properties and technological applications. Our method is also successfully extended to prepare highly pure silica spheres, tubes, and needles with controlled aspect ratios.  相似文献   

12.
ZnO–CuO nanostructures have been simultaneously synthesized by directly heating a CuZn alloy (brass) on a hotplate in ambient conditions. Depending on the Zn concentrations in the brasses, the dominant products transition from CuO nanowires to ZnO nanostructures. By changing the growth temperature and local Zn contents, 1D ZnO nanowires/nanoflakes, 2D ZnO nanosheets, and complicated 3D ZnO networks are obtained. Electron microscopy studies show that the as‐synthesized ZnO nanoflakes and nanosheets are single crystalline. Based on “self‐catalytic” growth, a tip‐growth mechanism for ZnO nanostructures is discussed, in which the Cu in brass plays an important role to confine the lateral growth of ZnO. Finally, the electron field emission from the ZnO–CuO hybrid systems is tested for the demonstration of potential applications.  相似文献   

13.
An air‐stable, low‐toxicity, single‐molecular source for ZnS is demonstrated to be an appropriate reagent to synthesize highly luminescent ZnS‐capped CdSe with a narrow size distribution. A photoluminescence quantum yield of above 50 % and a photoluminescence peak full width at half maximum of around 32 nm could be obtained after synthesis using a microreactor. The surface of the ZnS‐capped CdSe nanocrystals can be hydrophilic, while retaining the high quantum yield. Microscopic observation shows that accurate time control, which could be achieved by using a microreactor, is important to avoid the formation of many isolated ZnS particles and the deterioration of the luminescence.  相似文献   

14.
15.
Highly luminescent dendron‐substituted copolyfluorenes that incorporate surface‐modified cadmium sulfide nanoparticles have been prepared. A small percentage of these nanoparticles can be incorporated into the dendritic structures upon tailoring the interfaces between the ligands on the nanoparticles and the dendritic structures in the copolyfluorene. Both the photoluminescence and electroluminescence efficiencies of the polymer nanocomposites are dramatically enhanced—sometimes more than doubled—relative to the values of the pure polymer.  相似文献   

16.
Recently, we have developed a novel family of functionalized nanostructures that exhibit liquid‐like behavior in the absence of solvents and preserve their nanostructure in the liquid state. The gallery of nanostructures developed so far includes functionalized silica and magnetic iron oxide nanoparticles, layer‐like organosilicate nanoparticles, polyoxometalate clusters, and organic–inorganic hybrid networks. In an effort to demonstrate the wider applicability of this concept and to provide a deeper insight into this class of materials, the present work cites additional paradigms of functionalized nanostructures with similar behavior as above. In one case, surface functionalization of anatase nanoparticles (TiO2, an inorganic nanostructure) with a quaternary ammonium organosilane leads to ionically modified nanoparticles that, when electrostatically combined with a poly(ethylene glycol) (PEG)‐tailed sulfonate anion, exhibit liquid‐like behavior in the absence of solvents. In a different but quite interesting case of a bionanostructure, ion‐exchange functionalization of a DNA oligonucleotide with a PEG‐tailed quaternary ammonium cation leads to an easily separable liquid derivative with attractive features. These examples show the versatility of this concept over a range of nanostructures.  相似文献   

17.
In this paper we describe the combined use of surface‐initiated atom transfer radical polymerization (ATRP) and a gas/solid reaction in the direct preparation of CdS‐nanoparticle/block‐copolymer composite shells on silica nanospheres. The block copolymer, consisting of poly(cadmium dimethacrylate) (PCDMA) and poly(methyl methacrylate) (PMMA), is obtained by repeatedly performing the surface‐initiated ATRP procedures in N,N‐dimethylformamide (DMF) solution at room temperature, using cadmium dimethacrylate (CDMA) and methyl methacrylate (MMA) as the monomers. CdS nanoparticles with an average size of about 3 nm are generated in situ by exposing the silica nanospheres coated with block‐copolymer shells to H2S gas. These synthetic core–shell nanospheres were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), diffuse reflectance UV‐vis spectroscopy, X‐ray photoelectron spectroscopy (XPS), and powder X‐ray diffraction (XRD). These composite nanospheres exhibit strong red photoluminescence in the solid state at room temperature.  相似文献   

18.
Composition‐tunable ZnxCd1–xS alloyed nanocrystals have been synthesized by a new approach consisting of thermolyzing a mixture of cadmium ethylxanthate (Cd(exan)2) and zinc ethylxanthate (Zn(exan)2) precursors in hot, coordinating solvents at relatively low temperatures (180–210 °C). The composition of the alloyed nanocrystals was accurately adjusted by controlling the molar ratio of Cd(exan)2 to Zn(exan)2 in the mixed reactants. The alloyed ZnxCd1–xS nanocrystals prepared in HDA/TOP (HDA: hexadecylamine; TOP: trioctylphosphine) solution exhibit composition‐dependent shape and phase structures as well as composition‐dependent optical properties. The shape of the ZnxCd1–xS nanocrystals changed from dot to single‐armed rod then to multi‐armed rod with a decrease of Zn content in the ternary nanoparticles. The alloying nature of the ZnxCd1–xS nanocrystals was consistently confirmed by the results of high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and UV‐vis absorption and photoluminescence (PL) spectroscopy. Further, the shape‐controlled synthesis of the ternary alloyed nanocrystals was realized by selecting appropriate solvents. Uniform nanodots in the whole composition range were obtained from TOPO/TOP solution, (TOPO: trioctylphosphine oxide) and uniform nanorods in the whole composition range were prepared from HDA/OA solution (OA: octylamine). The effect of the reaction conditions, such as solvent, reaction temperature, and reaction time, on the PL spectra of the alloyed ZnxCd1–xS nanocrystals was also systematically studied, and the reaction conditions were optimized for improving the PL properties of the nanocrystals.  相似文献   

19.
The growth of nanocrystalline zinc sulfide thin films onto glass substrates by chemical bath deposition has been optimized at acidic pH. Powder X-ray diffraction (p-XRD) confirms the deposition of sphalerite, the cubic phase of ZnS. The crystallite size calculated by Scherrer equation was found to be 4.0 nm. Scanning Electron Microscopy (SEM) show clusters of spherical nanoparticles uniformly distributed over the surface of the glass substrates. Energy Dispersive X-ray (EDX) analysis of the deposited thin films show the zinc to sulfur ratio close to 1:1. The observed band gap (3.78 eV) of the deposited thin films is higher than that reported for cubic phase of bulk ZnS (3.54 eV) as expected due to nano-size crystallites. Binding energies calculated by X-ray Photoelectron Spectroscopy (XPS) confirm the material as ZnS and the photoluminescence measurements show the blue shift in emission maximum.  相似文献   

20.
Nickel sulfide (NiS) hollow spheres have been successfully synthesized by γ‐irradiation, at room temperature, of an aqueous PMMA–CS2–ethanol solution that contains NiSO4·6H2O. Electron microscopy results show that the diameter of the NiS hollow spheres and the thickness of the sphere shells are about 500 nm and 20 nm, respectively. The room‐temperature UV‐vis absorption spectrum of the NiS hollow spheres gives a peak centered at around 233 nm (5.56 eV) with a remarkable blue‐shift relative to that of bulk NiS (2.1 eV). This remarkable blue‐shift may be attributed to the small dimensions of the materials. A possible growth mechanism of NiS hollow spheres by γ‐irradiation method is also presented. The successful preparation of NiS hollow spheres on a large scale under mild conditions could be of interest for both applications and fundamental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号