首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new experimental approach that allows separation of the components of the Pickett effect due to surface microcracking and stress-induced shrinkage is developed and demonstrated for early age concrete subjected to tensile loads induced in restrained shrinkage tests. The experiment measures creep of three concree materials subjected to same loads, but under different environments: moist-cover, sealed, and drying conditions. The key features of the experiment are the suppression of shrinkage in the moist-cover test, and the uniform internal drying in the sealed test. The results confirm that the Pickett effect in tension has two sources: stress-induced shrinkage and microcracking. The new approach provides insght to creep, shrinkage, softening, and cracking behaviour under tensile load, and explains behavioral differences between plain and fiber reinforced concrete.  相似文献   

2.
In this second article, we examine in greater detail the influence of concrete skin micro-cracking, linked with the non-uniformity of water content within the specimen. This cracking is responsible for the drying creep which results from a structural effect, also called “microcracking effect”, and which we prefer to call “structural creep” here. It is defined as the difference between the potential drying shrinkage of a specimen which does not crack and the shrinkage measured experimentally. We propose a simple experimental method making use of experimental curves of drying shrinkage as a function of weight loss and allowing the flanking and specification of certain properties of structural drying creep. We shall see that this method must also deal, in the interpretation of results, with the choice of the mechanical constitutive model allowing the processing of nonlinearities induced by concrete skin micro-cracking. Finally, to validate the hypotheses we have made, we shall base our approach on a probabilistic model of the cracking of concrete resulting from the work of Rossi, “coupled” with consideration of the drying of the concrete material in a sense that we shall specify. We shall see that this model is in satisfactory agreement with the curves of shrinkage as a function of weight loss. In addition, the results of simulations are very instructive, as regards the spacing and the width as well as the depth of cracks which appear in the drying shrinkage and creep tests.  相似文献   

3.
Concrete creep at variable humidity: constitutive law and mechanism   总被引:1,自引:1,他引:0  
The previously formulated rate-type aging creep law based on Maxwell chain is generalized to variable humidity and is calibrated by extensive comparisons with test data from the literature. The main object of attention is the Pickett effect, i.e., the apparent increase in creep due to drying simultaneous with loading. This effect is shown to have four sources, in their decreasing order of importance: (1) stress-induced shrinkage, (2) tensile strain softening due to progressive cracking, (3) irreversibility of unloading contraction after tensile strainsoftening, and (4) increase of material stiffness due to aging (hydration). The model, which is a special case of a previously advanced thermodynamic theory, depends on only one hypothesis about the microscopic physical mechanism of creep: The creep rate depends on the magnitude of the flux of microdiffusion of water between the macropores (capillary pores) and the micropores in the cement gel. By assuming this microdiffusion to be infinitely fast, the effect is reduced to a dependence of creep viscosities on the time rate of pore humidity, and this is further shown to be equivalent to stress-induced shrinkage, in which the shrinkage coefficient defining the ratio of the increments of shrinkage strain and pore relative humidity depends on stress. In three dimensions, the shrinkage coefficient thus becomes a tensor. For thermodynamic reasons, there must also exist stress-induced thermal expansion. Although tensile cracking is found to make significant contribution to the Pickett effect, it is far from sufficient to explain in fully. The theory agrees with test data on basic creep, creep of specimens with reduced water content at hygral equilibrium (predried), shrinkage, swelling, and creep at drying under compression, tension, or bending. The strainsoftening model used for tensile cracking is the same as that used previously to fit test data from fracture tests, direct tensile tests, and deflection tests of reinforced beams.  相似文献   

4.
Following statistical evaluation in part 1, this part deals with the improvement of prediction by updating one or two parameters of the model on the basis of short term tests and theoretical derivation of some formulae. The updating of model parameters is particularly important for high strength concretes and other special concretes containing various admixtures, superplasticizers, water-reducing agents and pozzolanic materials. For the updating of shrinkage prediction, a new method is presented in which the shrinkage half-time is calibrated by simultaneous measurements of water loss. This approach circumvents the ill-posedness of the shrinkage extrapolation problem. Theoretical justifications of various aspects of the model are given and a new formula for the additional creep due to drying (or stress-induced shrinkage) is derived. The new model should allow a more realistic assessment of the creep and shrinkage effects in concrete structures, which significantly affect durability and long term serviceability of civil engineering infrastructure.  相似文献   

5.
A new model for the drying shrinkage of concrete is presented. In this model, drying shrinkage strains are regarded as being a spherical elastic and creep response of the material under rising pore pressures during the drying process. Therefore, a basic creep model which allows to incorporate these pore pressures is developed on the basis of microscopic considerations of the role of water in the creep mechanism. Then, the model response is compared to experimental results performed on a cement paste specimen subjected to drying. The developed model is able for describing the main features of the shrinkage behaviour of cement based materials.  相似文献   

6.
In this paper, an existing mesomechanical model for cementitious materials is extended to the domain of diffusion-driven phenomena. The model is based on the Finite Element Method, and uses zero-thickness interface elements equipped with a fracture-based constitutive formulation to represent cracks. The new developments presented in this paper consist of the application of the model to the hygro-mechanical coupled analysis of drying shrinkage in concrete specimens, explicitly taking into account the influence of (micro) cracks on the diffusion of moisture. In a first part of the paper, the model is presented in some detail, especially the new aspects regarding moisture diffusion including effects of cracks, and H-M coupling. The model predictions are then quantitatively compared with classical drying shrinkage experiments on concrete specimens. The consideration of different assumptions for the relation linking shrinkage strains and weight losses is discussed in some detail. Finally, the effect of size and volume fraction of the main heterogeneities of concrete on the drying process and drying-induced microcracking is also addressed.  相似文献   

7.
Tests of creep under axial load and torque have been made using tubular specimens of extremely small wall thickness (0.7 mm) in order to achieve sufficiently rapid moisture exchange with the environment. The changes of relative humidity and temperature in a program-controlled environmental chamber have been gradual, so as to minimize the differences in pore humidity throughout the specimen wall and the accompanying residual stresses and microcracking. A number of different humidity and temperature histories, including the drying before and during the creep test, and the humidity changes during the creep test and during the recovery, have been tested. The measurements have revealed a decline of the slope of creep curve in log-time after a sufficiently long drying period; acceleration of creep as well as recovery by both drying and wetting; a smaller and more delayed acceleration at lower humidities; a delay of this acceleration with respect to the weight loss; a similarity of these effects in axial and torsional creep; a higher recovery as well as creep at higher humidities when moisture equilibrium has been approached before loading; a higher creep acceleration by temperature increases or decreases when the humidity is below saturation, but a smaller acceleration at nearly dry state; and other effects.  相似文献   

8.
The paper presents experimental results concerning the comparison of tensile and compressive basic creep behaviours at early ages of two different concretes: a normal strength concrete (NSC) and a very high strength fibre reinforced concrete (HPFRC). This research project has been done in the context of a bilateral collaboration between Polytechnique Montreal and IFSTTAR. Observations on the HPFRC showed specific compressive creep similar to the specific tensile creep. Moreover, the specific creep curves obtained under compressive and tensile loading had always positive values, i.e. they were in same direction of the applied load on specimens. Measurements made on the NSC revealed specific compressive creep with positive values (in the loading direction). However, specific tensile creep presented negative values (opposite direction of loading) for a long period. A physical explanation based on the existence of two mechanisms with opposite effect is proposed to describe these basic creep results. The first mechanism is a coupling between the microcracking process and the water transfers that lead to additional self-drying shrinkage; the second mechanism is the self-healing of concrete induced by the microcracking.  相似文献   

9.
The deformation behaviour of self-compacting concretes of the compressive strength classes C30/37, C45/55 and C60/75 according to the European Standard EN 206-1 under sustained tensile loading was investigated up to 2.5 years. The long-term tensile strength was estimated to be 69% of the short-term tensile strength, determined at an age of 28 days. Load-free shrinkage has been measured on companion specimens. The usual way to determine creep is to subtract the measured shrinkage strain and the elastic or initial strain from the measured total strain. In doing so, a phenomenon was discovered which is called stress-induced shrinkage. It turned out that the drying shrinkage was larger for loaded specimens than for load-free specimens. Similar results have been found earlier. It seemed that the stress-induced shrinkage tends to increase with decreasing compressive strength. An important practical consequence is arising from stress-induced shrinkage: structural elements subjected to tensile␣load, tend to dry and to shrink faster than one␣would expect based on the assumption of load-free shrinkage. In the case of sustained deformation, this would raise the risk of cracking and would have a negative effect on the durability of a concrete structure. An erratum to this article can be found at  相似文献   

10.
Effect of metakaolin on creep and shrinkage of concrete   总被引:13,自引:0,他引:13  
The effect of metakaolin (MK) on the creep and shrinkage of concrete mixes containing 0%, 5%, 10%, and 15% MK has been investigated. The results showed that the early age autogenous shrinkage measured from the time of initial set of the concrete was reduced with the inclusion of MK, but the long-term autogenous shrinkage measured from the age of 24 h was increased. At 5% replacement level, the effect of MK was to increase the total autogenous shrinkage considered from the time of initial set. While at replacement levels of 10% and 15%, it reduced the total autogenous shrinkage. The total shrinkage (autogenous plus drying shrinkage) measured from 24 h was reduced by the use of MK, while drying shrinkage was significantly less for the MK concretes than for the control concrete. The total creep, basic creep as well as drying creep were significantly reduced particularly at higher MK replacement levels. Compared with estimated values by the CEB 90 model, total creep of all concretes was overestimated, especially in the mixes containing the higher levels of MK. For basic creep, estimates for low levels of MK were acceptable but, for the higher levels, creep was overestimated.  相似文献   

11.
A novel model of mechanical performance of concrete at early ages and beyond, and in particular, evolution of its strength properties (aging) and deformations (shrinkage and creep strains), described in terms of effective stress is briefly presented. This model reproduces such? phenomena known from experiments like drying creep or some additional strains, as compared to pure shrinkage, which appear during autogenous deformations of a maturing, sealed concrete sample. Creep is described by means of the modified microprestress-solidification theory with some modifications to take into account the effects of temperature and relative humidity on concrete aging. Shrinkage strains are modelled by using effective stresses giving a good agreement with experimental data also for low values of relative humidity. Results of four numerical examples based on the real experimental tests are solved to validate the model. They demonstrate its possibilities to analyze both autogenous deformations in maturing concrete, and creep and shrinkage phenomena, including drying creep, in concrete elements of different age, sealed or drying, exposed to external load or without any load.  相似文献   

12.
Drying shrinkage may be a significant cause of deterioration of thin concrete overlays. Shrinkage-induced stresses can at least partially be relieved by tensile creep, but our knowledge of this property is quite little. This paper summarizes some of the latest fidings of a research program aimed at understanding and characterizing the dimensional compatibility of concrete overlays through the study of tensile creep. A large test program was undertaken for that matter by means of two tensile creep apparatus developed for the purpose of the project. The influence of several parameters upon tensile creep was addressed including the effect of the water to cement ratio, the type of cement, the paste content, air entrainment, fibre reinforcement, the age at loading, and the level of stress. Tensile creep was found to be a very significant phenomenon and generally, it is more sensitive to the concrete mixture characteristics than drying shrinkage, implying that concretes intended for overlay works could effectively be designed in view of dimensional compatibility. A simplified analytical model, based on the non-linear diffusion theory, confirms the importance of the role played by creep in reducing shrinkage-induced stresses and, hence, the problems of cracking in concrete overlays. The simulations performed on this model shows that the behavior of the repaired element is mainly influenced by the relative specific creep to shrinkage ratio, the ultimate shrinkage, and the design parameters such as the depth of the overlay and the externat restraints.  相似文献   

13.
In this work, drying shrinkage of four alkali-activated slag (AAS) mortars, prepared using various types/dosages of activator, was characterized at four different levels of relative humidity (RH) and two drying regimes (i.e. direct and step-wise drying). The results show that drying shrinkage values of AAS are significantly dependent on the drying rate, as AAS shrinks more when the RH is decreased gradually, instead of directly. At high RH, the drying shrinkage of AAS exhibits a considerable visco-elastic/visco-plastic behavior, in comparison to ordinary portland cement (OPC). It is concluded that the cause of high-magnitude shrinkage in AAS mortar is due to the high visco-elastic/visco-plastic compliance (low creep modulus) of its solid skeleton. Furthermore, the activator affects the shrinkage behaviors of AAS by influencing the pore structure and mechanical properties.  相似文献   

14.
Proposed is a practical model for predicting creep and shrinkage of concrete from the composition of concrete mix, strength, age at loading, conditions of environment, size and shape, etc. The main features are: double power law for basic creep, square-root hyperbolic law for shrinkage, diffusion-type size dependence of humidity effects, additive drying creep term related to shrinkage, and activation energy treatment of thermal effects. Optimization techniques are used to fit numerous test data available in the literature. The work is a continuation of previous investigations and consists of several parts. This first part deals with shrinkage.  相似文献   

15.
Experiments were conducted on 150 × 600 mm cylindrical specimens to investigate creep and drying shrinkage of concrete containing ground granulated blast furnace slag (GGBFS). The creep strain was measured for 150 days under a constant sustained load. The creep strain recovery was measured for one subsequent month after the removal of the sustained load. The shrinkage strain was also measured for 180 days. The amount of cement replacement by GGBFS was 20%, 40% and 60% by weight of cement. The test results indicate that higher GGBFS percentage exhibits higher creep and shrinkage strains. At 150 days of sustained loading, the average creep coefficients of 20%, 40% and 60% GGBFS concrete are 16.3%, 33.3% and 55.2% higher than plain concrete. In the absence of a creep and shrinkage prediction model for GGBFS concrete, a modification factor is suggested for incorporating the effect of GGBFS proportion in the existing models. The available models for predicting creep and shrinkage strain of plain concrete are compared.  相似文献   

16.
Shrinkage and creep results are presented for different types of masonry mortars having a wide range of strength. The range of values implies that the type of mortar has an appreciable influence on deformation of masonry. The results are analysed, together with other data obtained from other investigations carried out over several years in the same laboratory, and predictive models developed. Factors quantified are strength, volume/surface/ ratio, time of exposure to drying (shrinkage) and time under load (creep). While creep is unaffected, for a given strength, shrinkage of water-cured mortar is greater than shrinkage of mortar that is cured under polythene. When based on 28-day strength, the average error of prediction for shrinkage is 19% but if based on the strength at the start of shrinkage, the error coefficient is reduced slightly to 16%. Creep is estimated with an average error of 24%.  相似文献   

17.
Prediction of moisture curling of concrete slab   总被引:1,自引:0,他引:1  
  相似文献   

18.
The main purpose of this research is to study the time dependent behaviour of a geopolymer concrete. The geopolymer binder is composed of 85.2 % of low calcium fly ash and only 14.8 % of ground granulated blast furnace slag. Both drying shrinkage and creep are studied. In addition, different curing conditions at elevated temperature were used. All experimental results were compared to predictions made using the Eurocode 2. The curing regime plays an important role in the magnitude and development of both creep and drying shrinkage of class F fly ash based geopolymer concrete. A minimum of 3 days at 40 °C or 1 day at 80 °C is required to obtain final drying shrinkage strains similar to or less than those adopted by Eurocode 2 for ordinary Portland cement (OPC) concrete. Creep strains were similar or less than those predicted by Eurocode 2 for OPC concrete when the geopolymer concrete was cured for 3 days at 40 °C. After 7 days at 80 °C, creep strains became negligible.  相似文献   

19.
研究探讨了干燥过程中树盘受抑制干缩应变、自由干缩应变、弹性应变、黏弹性蠕变应变以及机械吸附蠕变的图像解析测算法;运用该方法测算了白桦树盘常规缓慢干燥(含水率分布均匀)过程中干缩异向性引起的弦向各应变,分析了干燥过程中不同含水率阶段的应力状态及应力与各应变的关系。结果表明:应变的图像解析测算法可满足精度要求;树盘干燥至fiber saturation point(FSP)以下,弦向首先受拉伸应力作用,随着干燥的进行,拉伸应力转变为压缩应力;应力方向与各应变对应关系不同,与黏弹性蠕变应变无明显对应关系,与机械吸附蠕变基本对应。  相似文献   

20.
Model for practical prediction of creep and shrinkage of normal strength concrete, developed previously, is extended to high strength concrete. It is found that only a minor adjustment for the concrete strength effect is needed in the formulas for drying creep. The formulas for basic creep and shrinkage need no adjustment. The prediction model is compared with test data for creep and shrinkage obtained recently by Ngab, Nilson and Slate, and by Collepardi, Corradi and Valente, and a satisfactory agreement is demonstrated. The coefficient of variation of the deviations from test data is not larger than that for the normal cient of variation of the deviations from test data is not larger than that for the normal strength range. However, the existing data are rather limited and further testing is desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号