共查询到20条相似文献,搜索用时 15 毫秒
1.
Javed Alam Ufana Riaz S. M. Ashraf Sharif Ahmad 《Journal of Coatings Technology and Research》2008,5(1):123-128
The application of nanotechnology in the corrosion protection of metals has recently gained momentum. A polymer nanocomposite
coating can effectively combine the benefits of organic polymers, such as elasticity and water resistance, to that of advanced
inorganic materials, such as hardness and permeability. Environmental impact can also be improved by utilizing nanostructure
particulates in coatings and eliminating the requirement of toxic solvents. Nanocomposites have also proven to be an effective
alternative to phosphate-chromate pretreatment of metallic substrate, which is hazardous due to the presence of toxic hexavalent
chromium. This article reports some of the preliminary investigations on the corrosion-resistance performance of soya oil
alkyd, containing polyaniline/ferrite nanocomposite. The corrosion-protective performance was evaluated in terms of physico-mechanical
properties, corrosion rate, and SEM studies. The polyaniline/ferrite nanocomposite coatings were found to show a far superior
corrosion-resistance performance compared to that of a pure PANI/alkyd system. 相似文献
2.
Montmorillonite/polypyrrole (MMT/PPy) nanocomposites were prepared by the in situ polymerization of pyrrole in the presence of MMT. The morphology of the MMT/PPy nanocomposites as examined by scanning electron microscopy differs slightly from that of the untreated MMT but markedly from that of polypyrrole. X-ray photoelectron spectroscopy (XPS) showed that the materials have MMT-rich surfaces, an indication that polypyrrole is essentially intercalated in the host clay galleries. The transmission electron microscopy showed, that the interlamellar spacing of the untreated MMT increased from 1.25 to 18.9 nm, when compared to nanocomposite MMT/10.8% PPy. Moreover, XPS highlighted the cation exchange of Na+ from montmorillonite by K+ (from the oxidant) and by the positively charged polypyrrole chains. Inverse gas chromatography indicated that the nanocomposites are high surface energy materials with a dispersive contribution to the surface energy reaching 200 mJ/m2 at 150 °C, for a PPy loading of 21.4 wt%. The values of the MMT/PPy nanocomposites were correlated to the changes in the specific surface area of the MMT induced by the intercalation of polypyrrole. 相似文献
3.
This work focuses on the preparation, characterization and electrical conductive properties of intercalated polyaniline/Na-montmorillonite
nanocomposites. These materials consisting of polyaniline and Na-montmorillonite were prepared by oxidative polymerization
with benzoyl peroxide as oxidizing agent. The synthesized nanocomposites were investigated by a series of characterization
techniques; including Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal
analysis. X-ray diffraction and scanning electron microscopy images showed that the polyaniline was inserted into the clay
layers. The modest increase in layer spacing was as much as 0.53 nm. The thermogravimetric analysis and differential thermal
analysis demonstrated the improved thermal stability of the intercalated nanocomposites relative to the pure polyaniline due
to the incorporated Na-montmorillonite. The room temperature electrical conductivity of nanocomposites varied from 1.0 × 10−7 to 5.8 × 10−5 Scm−1. 相似文献
4.
Polyamide-imide (PAI) is a high performance condensation polymer, which has high heat resistance and high radiation resistance. Solvent suspensions of PAI are widely used in magnetic wire coatings. Montmorillonite (MMT) nanocomposites were investigated for the concentration effects on dispersion, glass transition, degradation, and mechanical properties. Samples were prepared using a controlled torque stirrer and slow solvent extraction was followed for the cast samples. Optical microscopy shows that the surface of the cast sample has increased edge-edge clay platelet attraction. Transmission electron microscopy of the through thickness sample indicated platelet edges, increased face-face coagulated states and some edge-edge flocculated states of tactoid formation. X-ray diffraction indicated that for 1% sample a highly exfoliated structure was obtained while between 1.5 and 3% intercalated and exfoliated dispersions were obtained. The glass transition was not significantly affected by clay presence but a drop in specific heat change was observed for all samples showing a 001 clay peak presence. The first heating scan showed PAI solvent and MMT organic emission but these emissions did not affect the PAI chemically. Degradation was altered by the level of matrix shielding by the clay. Hardness values were increased with clay presence but unaffected by concentration. 相似文献
5.
The hard-segment phase thermal transitions and heat-resistance of benzidine-modified-montmorillonite (BZD-Mont)/polyurethane nanocomposites of different hard segment contents were found to be affected by a small amount of BZD-Mont. In particular, the presence of less than 5 wt% layered silicates from BZD-Mont can result in hard segments not only having a more thermally stable long-range order and a higher melting temperature, but also showing a loss of crystallinity of the hard segment in polyurethane. Additionally, the degradation temperature of BZD-Mont/polyurethane nanocomposite was slightly higher than that of pure polyurethane. 相似文献
6.
Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure. 相似文献
7.
Diglycidyl ether of bisphenol A type epoxy resin-polyether polyol-organically treated montmorillonite ternary nanocomposites were synthesized in this study. The effects of addition of polyether polyol as an impact modifier on morphological, thermal and mechanical properties of nanocomposites were investigated by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry, impact and tensile testing. The results showed that organically treated montmorillonite is intercalated by epoxy, since the interlayer spacing expanded from 1.83 to 3.82 nm upon nanocomposite synthesis. The addition of polyether polyol impact modifier had no effect on the interlayer spacing. SEM examination showed that polyol forms an immiscible phase in the epoxy matrix. Thermal characterization of nanocomposites indicated an increase in Tg with respect to both polyether polyol and montmorillonite contents. The impact strength of the samples with no clay was improved approximately 160% upon adding 7 wt% polyether polyol. In polyether polyol modified nanocomposites, the impact and tensile strengths decreased with respect to increasing amount of montmorillonite and showed a maximum with respect to the polyether polyol content at constant clay loading. The Young's modulus of the nanocomposites exhibited an increase with respect to the montmorillonite loading and showed a maximum with respect to the polyol content at each clay loading. 相似文献
8.
Polypropylene/montmorillonite nanocomposites (PPCNs) with 3% organophilic montmorillonite (OMMT) content were prepared via ultrasonic extrusion. The objective of present study was to investigate the effects of ultrasonic oscillations in processing on the morphology and property development of PPCNs. XRD and TEM results confirmed the intercalated structure of OMMT in conventional nanocomposite (without ultrasonic treatment) and ultrasonicated nanocomposite, but ultrasonic oscillations could make silicate layers finely dispersed and a little exfoliated. According to SEM, the OMMT particles were evenly and finely dispersed in the ultrasonicated nanocomposite via ultrasonic oscillations, and the aggregation size of clay particles was about 100 nm, which is less than that in conventional nanocomposite. The crystalline dimension, crystalline morphology and the growth rate of crystallization in PPCNs were investigated by DSC and PLM, it was found that the OMMT particles and ultrasonic oscillations played an important role in the nucleation rate, crystallization temperature and spherulite size of PP matrix in nanocomposites. Compared with conventional nanocomposite, the mechanical properties of the ultrasonicated nanocomposite increased due to the improved dispersion of OMMT and diminished spherulite size. The thermal stability and the rheological behavior of PP and its nanocomposites were both studied by thermogravimetry and high pressure rheometer, respectively. 相似文献
9.
The effect of sodium montmorillonite source on the morphology and properties of nylon 6 nanocomposites was examined using equivalent experimental conditions. Sodium montmorillonite samples acquired from two well-known mines, Yamagata, Japan, and Wyoming, USA, were ion exchanged with the same alkyl ammonium chloride compound. The resulting organoclays were extruded with a high molecular weight grade of nylon 6 under the same processing conditions. Quantitative analysis of TEM photomicrographs of the two nanocomposites reveal a slightly larger average particle length and a slightly higher degree of platelet exfoliation for the Yamagata based nanocomposite than the Wyoming version, thus, translating into a higher particle aspect ratio. The stress-strain behavior of the nanocomposites appears to reflect the nanocomposite morphology, in that higher stiffness and strengths are attainable with the increased particle aspect ratio. Moreover, the trends in stiffness behavior between the two types of nanocomposites may be explained by conventional composite theory. 相似文献
10.
New fabricate of styrene-butadiene rubber/montmorillonite nanocomposites by anionic polymerization 总被引:1,自引:0,他引:1
Styrene-butadiene rubber/montmorillonite (SBR/MMT) nanocomposites were successfully synthesized by in situ living anionic polymerization with n-BuLi as initiator. The results from kinetics study and 1H NMR indicated that the addition of organophilic montmorillonite (OMMT) did not changed the living copolymerization and the components of the copolymer on the whole when OMMT content was lower than 3 wt %. However, gel permeation chromatography showed that the introduction of OMMT resulted in small amount of high-molecular weight fraction of SBR in the composites, leading to an increase in the weight-average molecular weight and polydispersity index, but the unchangeableness of the number-average molecular weight. The result from transmission electron microscopy and X-ray diffraction revealed that a completely exfoliated structure existed in the nanocomposite with 25 wt % styrene and OMMT content from 1 to 4 wt %, and styrene played an important role in the expanding of OMMT layers. Moreover, the nanocomposites possessed higher glass-transition temperature, thermal stability, tensile strength and elongation at break than SBR when the OMMT content ranged from 2.5 to 4 wt %. A schema was proposed to illustrate the formation of the nanocomposite and the exfoliation structure with physical cross-linking between SBR chains and OMMT. 相似文献
11.
The preparation and processing of most of polymer/clay nanocomposites need high temperature. This limited the application of commonly used organic modifiers of long carbon-chain alkyl ammonium salts because of their low thermal stability. In this study, we synthesized two novel thermally stable, rigid-rod aromatic amines. Montmorillonite (MMT) treated by these amines exhibited larger layer-to-layer spacing, higher thermal stability than that treated by commonly used 1-hexadecylamine and also high ion-exchange ratio (>95%). They were applied to prepare nanocomposites with polyimide (PI) by in situ polymerization. XRD, TEM were used to obtain the information on morphological structure of PI/MMT nanocomposites. DMA, TGA, DSC, universal tester were applied to characterize the mechanical and thermal properties of the nanocomposites. When the MMT content was below 3 wt%, the PI/MMT nanocomposites were strengthened and toughened at the same time. The introduction of a small amount of MMT also led to improvement in thermal stability, slight increase in glass transition temperature, marked decrease in coefficient of thermal expansion and decrease in solvent uptake. MMT treated by these aromatic amines exhibited better dispersibility and (probably) interfacial interaction with PI matrix than that treated by 1-hexadecylamine. The nanocomposites based on these MMT resultantly exhibited better mechanical, thermal and solvent resistance properties than those based on 1-hexadecylamine treated MMT. 相似文献
12.
Nanocomposites of polyaniline (PANI) with organophilic montmorillonite (O-MMT) and hydrophilic montmorillonite (Na-MMT) were prepared. The nanocomposites were characterized using FT-IR, D.C. electrical conductivity measurement and cyclic voltammetry techniques. It was found that PANI/Na-MMT nanocomposite has lower (5.8%) and PANI/O-MMT nanocomposite has higher (29.4%) conductivity compared to pure polyaniline. Cyclic voltammetry experiments showed that both nanocomposites are electroactive. The anticorrosive properties of a 100 μm thickness coating of nanocomposites on iron coupons were evaluated and compared with pure polyaniline coating. According to the results PANI/MMT nanocomposites have enhanced corrosion protection effect in comparison to pure polyaniline coating. Results showed also that the PANI/Na-MMT and PANI/O-MMT nanocomposites have considerably different corrosion protection efficiencies in various corrosive environments. 相似文献
13.
Ding-Ru Yei 《Polymer》2004,45(8):2633-2640
We have prepared polystyrene/clay nanocomposites using an emulsion polymerization technique. The nanocomposites were exfoliated at up to a 3 wt% content of pristine clay relative to the amount of polystyrene (PS). We used two different surfactants for the montmorillonite: the aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) and the ammonium salt of cetylpyridinium chloride (CPC). Both surfactants can intercalate into the layers of the pristine clay dispersed in water prior to polymerization. Although the d spacing of the POSS-intercalated clay is relatively smaller than that of the CPC-intercalated clay, PS more easily intercalates and exfoliates the POSS-treated clay than the CPC-treated clay. IR spectroscopic analysis further confirms the intercalation of POSS within the clay layers. We used X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize the structures of the nanocomposites. The nanocomposite prepared from the clay treated with the POSS containing surfactant is exfoliated, while an intercalated clay was obtained from the CPC-treated surfactant. The molecular weights of polystyrene (PS) obtained from the nanocomposite is slightly lower than the virgin PS formed under similar polymerization conditions. The value of Tg of the PS component in the nanocomposite is 8 °C higher than the virgin PS and its thermal decomposition temperature (21 °C) is also higher significantly. The presence of the POSS unit in the MMT enhances the thermal stability of the polystyrene. 相似文献
14.
In this work, using electrochemical techniques the authors investigated the protective properties of a polypyrrole/polyaniline bilayer as a conductive polymer. A polypyrrole/polyaniline bilayer was deposited on carbon steel substrate by potentiostatic method. The electric capacitance and resistance of the films were monitored with the immersion time in a corrosive solution to investigate the water permeability of the films. Polypyrrole/polyaniline bilayer has a relatively low permeability and good catalytic behavior in passivation of carbon steel in longer periods. The results show that the bilayer has a better anticorrosive behavior compared to homopolymers (polypyrrole and polyaniline). 相似文献
15.
We report a facile strategy for preparing polyimides (PI)/montmorillonite (MMT) nanocomposites at moderate temperatures that avoids thermal degradation of organically-modified MMT (organo-MMT) that is commonly observed during conventional melt-blending of organo-MMT with commercial high molecular weight PI at elevated temperatures. Novel polyimides of low molecular weight (oligoimides) based on 1,3-bis(3′,4,-dicarboxyphenoxy)benzene and 4,4′ bis(4″-aminophenoxy)diphenylsulfone were synthesized and subsequently melt-blended at temperatures ranging from 150 to 250 °C with special organically-modified montmorillonite clay nanoparticles to form new polyimide/organo-MMT nanocomposites with special combination of physical and chemical properties for diverse applications such as microelectronic components where chemical inertness, high temperature stability, low dielectric constant, mechanical toughness and processability are primary requirements. It was found that application of a strong shearing flow near the glass transition temperature of the oligoimide to the oligoimide/organo-MMT nanocomposite melt blend containing 6±2 vol% of the organo-MMT resulted in three orders of magnitude increase in the viscosity. Partial exfoliation of the organo-MMT together with constrained deformation of the polymer between the rigid nanoparticle layers (as evidenced by formation of the network structure or fractal gel) are thought to be responsible for this observed viscosity behavior. The viscosity behavior is typical for model xylene/MMT system where the MMT particles were dispersed in xylene solvent homogeneously via ultrasonic mixing. This study suggests that the rheological methods used here may provide a valuable analytical tool to accelerate efforts to develop useful polyimide nanocomposites from synthetic oligoimides containing ceramic nanoparticles having different shapes and sizes. Further, because of their facile synthesis and desirable characteristics these polyimide/MMT clay nanocomposites are expected to be excellent model systems for exploring feasibility of new routes for driving organic polymers to self-assemble into useful nanocomposites. 相似文献
16.
Douglas M. Fox Richard H. Harris Jr. Jeffrey W. Gilman Mikhail Y. Gelfer Benjamin S. Hsaio Paul H. Maupin Paul C. Trulove 《Polymer》2011,52(23):5335-5343
A polyhedral oligomeric silsesquioxane (POSS) tethered imidazolium surfactant was used to exchange montmorillonite for the preparation of polymer nanocomposites in polystyrene, poly(ethylene-co-vinyl acetate), and polyamide-6 using a melt blending technique. Simultaneous temperature resolved small angle X-ray scattering and wide angle X-ray diffraction was used to monitor the surfactant stability and phase behavior of the polyamide-6 nanocomposites. Good thermal stability of the surfactant was in agreement with thermogravimetric analysis. Transmission electron microscopy revealed a mixed intercalated/exfoliated structure, with the presence of small tactoids exhibiting gallery spacings greater than 3.8 nm in all three polymers. Fluorescently tagged organically exchanged montomorillonite was used to assess the quality of nanoparticle dispersion. Exchanging the montmorillonite with lower loadings of the POSS surfactant slightly increased the size of clay tactoids, but did not significantly alter the gallery spacing or overall dispersion. The results suggest that the bulky and rigid structure of POSS, as well as its tendency to aggregate into ordered crystals, form a bilayer structure in the clay galleries and prevent montmorillonite from completely exfoliating, even in polyamide-6. 相似文献
17.
18.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix. 相似文献
19.
Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability 总被引:4,自引:3,他引:4
Hasmukh A. Patel Rajesh S. Somani Hari C. Bajaj Raksh V. Jasra 《Applied Clay Science》2007,35(3-4):194-200
Quaternary phosphonium cations (hexadecyl tributyphosphonium; tetradecyl tributylphosphonium; tetraphenylphosphonium; methyl triphenylphosphonium; ethyl triphenylphosphonium and propyl triphenylphosphonium) were intercalated into montmorillonite (MMT) rich bentonite of Indian origin, by ion exchange reaction. The phosphonium MMT were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD), particle size distribution (PSD) and thermogravimetric analysis (TGA). The phosphonium cations significantly influenced the particle size distribution. With longer alkyl chain finer particles were formed. The tetrabutylphosphonium and tetraphenylphosphonium MMT showed enhanced thermal stability (300–400 °C) and may be potentially useful materials for melt processing of polymer/layered silicates nanocomposites. 相似文献
20.
Polymer layered silicate nanocomposites have been studied for many years and due to their distinguished properties and applications, it is still the subject of many research programs. There are different methods of preparation, with the melt intercalation method as the mostly used method. Due to the thermal destructive effects of melt mixing on the polymer chains there are currently efforts to develop some new methods of preparation. A solvent/non-solvent method has been developed in this study for the preparation of ABS/clay nanocomposites. ABS nanocomposite is precipitated after addition of ethanol (non-solvent) containing organic modified montmorillonite from a THF solution while it is stirring. A kind of mixing system known as homogenizer has been used in this work. The final product has been determined having an intercalated structure with a uniform interlayer spacing of the silicate layers. The ABS nanocomposites prepared in this work has been studied by X-ray diffraction, FTIR, transmission electron microscope and thermogravimetric analysis. The effect of using homogenizer on the characteristics of the nanocomposites also has been investigated and discussed in several parts of the present work. 相似文献