首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel hybrid diol (HD) crosslinker has been synthesized with hydrolyzable –Si–OR groups from 3-amino propyl trimethoxy silane and 3-glycidoxy propyl trimethoxy silane. Its chemical structure was confirmed by Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy to introduce it as a crosslinker in the castor oil, a renewable resource, to develop functional organic inorganic hybrid coatings. A series of castor oil-based organic–inorganic hybrid materials were prepared from castor oil, isophorone diisocyanate, and the different weight percentages of synthesized HD. Dynamic mechanical thermal analysis, thermogravimetric analysis, differential scanning calorimetry, and the universal testing machine were employed to characterize the hybrid films. The measured properties were found to be strongly influenced by the weight ratio of HD to the castor oil-based polyurethanes. The glass transition temperatures (T g) for the cured hybrid films were found to be 26–72°C. Antibacterial activity, in vitro hydrolytic degradation, and swelling properties of the hybrid films have been studied. The cured hybrid films exhibited excellent antibacterial activity, which was enhanced with addition of the HD. The alkoxy silane-crosslinked castor oil-based coatings have shown better mechanical and viscoelastic properties in comparison to the control (uncrosslinked castor oil-based polyurethane-urea) coatings. The results showed that the weight percent of the HD is the main factor that controls the thermal, antimicrobial, mechanical, swelling, and degradation properties of these hybrid films.  相似文献   

2.
In recent years, a lot of interest has been given to renewable resources for their environmental friendliness and potential biodegradability in the synthesis of urethane-derived polymers. In this work, UV-curable castor oil-based polyfunctional polyurethane acrylate (COPUA) was prepared by the reaction of isophorone diisocyanate (IPDI) with castor oil and pentaerythritol triacrylate (PETA). The structures and molecular weights of the targeted IPDI–PETA and COPUA were characterized by FTIR, 1H NMR, and GPC, respectively. In addition, the effect of reactive diluent content on damping properties, thermal stabilities, and mechanical properties of COPUA was characterized by dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and universal test machine. DMA revealed the copolymers had a glass transition temperature (T g) from 31.81 to 48.09°C. TGA showed that thermal initial decomposition temperatures were above 344.5°C, indicating the copolymers had certain thermal stability. Finally, some physical properties of curing films were studied by the contact angle and water absorption, and the results showed that the coatings exhibited good hydrophobicity. The COPUA obtained from castor oil can be used as eco-friendly materials and other applications alternative to the use of other petrochemicals in coatings.  相似文献   

3.
The purpose of this paper is to introduce a novel UV‐cured interpenetrating polymer networked phase change materials (IPN‐PCMs), on which no article has been found in the so far published research. Maleated castor oil (MCO) was synthesized via maleinization reaction of castor oil with maleic anhydride. Organic–inorganic hybrid interpenetrating polymer networked (IPN) materials containing both cationic and radical sections and IPN‐PCMs containing tetradecanol, hexadecanol, and octadecanol were prepared. The chemical structure of MCO and organic–inorganic hybrid IPN‐PCMs were determined by using Fourier Transform Infrared Spectroscopy (FT‐IR). Differential scanning calorimetry (DSC) was used for examining the phase‐change behaviors of the materials. Thermal stability was investigated by thermogravimetric analysis (TGA). Moreover, the surface formation of the specimen was investigated by scanning electron microscopy (SEM). In conclusion, our study proved that because of their high latent heat storage scope and high thermal stability, the obtained organic–inorganic hybrid IPN‐PCMs could be used as thermal energy storage materials. POLYM. ENG. SCI., 58:870–875, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
Waterborne castor oil-recycled polyol based polyurethane-silica nanocomposite adhesives (WPU) with polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. A series of waterborne polyurethane adhesives with hard segment contents from 71.3 to 74.5 wt%, were synthesized using an isophorone diisocyanate, 2-bis(hydroxymethyl) propionic acid, recycled castor oil-based as soft segments and (3-aminopropyl)triethoxysilane (APTES) as chain extender. The depolymerized oligoester obtained from glycolysis of poly(ethylene terephthalate) (PET) waste using triethylene glycol (TEG), was transesterified with castor oil (CO) which resulted in the formation of hydroxyl-functional polyester polyol, with hydroxyl value of 414 mgKOH g−1. The molecular structures and mass of glycolyzed PET oligoesters, castor oil-based polyol and castor oil-based polyurethane-silica nanocomposite adhesives were estimated by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The structure and properties of the resulting films were investigated by FTIR, wide angle X-ray diffraction measurement (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). TG analysis indicated that APTES can improve the thermal stability of WPU. XRD showed that the crystallinity of WPU decreased with the increase alkoxysilane content. The extent of crosslinking was investigated to show a dependence on silica concentration, which increased the glass transition temperature and particle size of polyurethane nanocomposites with increasing alkoxysilane content due to the condensation of the alkoxysilane groups. The hardness, adhesion and gloss quality of the polyurethane films were also determined considering the effect of APTES content, so this paper confirmed the suitability of using these castor oil-based waterborne polyurethane-silica nanocomposites as new adhesive materials with high performance coatings materials. The experimental results reveal that the APTES and the hard segment content play a key role in controlling the structure and properties of the PU cast films based on castor oil-recycled polyols.  相似文献   

5.
A novel core–shell type fluorinated acrylic and siliconated polyurethane (FSiPUA) hybrid emulsion was prepared by seeded emulsion polymerization using siliconated polyurethane (SiPU) as a seed and forming the structure with SiPU as a shell and the copolymer of butyl acrylate (BA) with 2,2,2-trifluoroethylmethacrylate (TFEMA) as a core. SiPU was synthesized using isophorone diisocyanate (IPDI), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), dihydroxybutyl-terminated polydimethylsiloxane (PDMS), dimethylol propionic acid (DMPA), 1,6-hexanediol (HDO) and triethylamine (TEA). The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structure of SiPU and FSiPUA. Investigation of transmission electron microscopy (TEM) confirmed the core–shell structure of FSiPUA emulsion and gave the particle size at about 50 nm. The measurement results of water contact angles and the solvent absorptions in water and n-octane for cured films showed that the water and the oil repellency for FSiPUA had been improved significantly with a suitable content of fluorine and siloxane.  相似文献   

6.
Castor oil polyols (COLs) have been synthesized from glycolyzed oligoester polyol in order to produce waterborne polyurethane (WPU)/silica hybrid dispersions. Soft drinks poly(ethylene terephthalate) (PET) bottles were depolymerized by glycolysis with different molar ratio of poly(ethylene glycol) ( PEG 400), in the presence of zinc acetate as catalyst. The obtained glycolyzed products were reacted with castor oil (CO) to attain castor oil polyols by the process of transesterification. Five castor oil polyols were used with hydroxyl values of 255, 275, 326, 366 and 426 mg KOH g−1. Several castor oil-based, polyurethane/silica hybrid dispersions having soft segment content of 39.6% to 28.2% and two concentrations of SiO2 nanoparticles (0.5 and 1.0) have been prepared.The incorporation effect of SiO2 nanoparticles into the PU matrix and the hydroxyl functionality of the COLs on the thermal and mechanical properties of resulting polyurethane films has been examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TG) and measurement of the mechanical properties. The degree of phase separation (DPS) between oxide nanoparticles and hard segment, and particle size in the polyurethane, depends to some extent on nanosilica content and the hydroxyl functionality of the polyols employed in the polyurethane preparation process.Thermal stability of obtained hybrid materials depends on the hydroxyl functionality of the COLs and nanosilica content. The T10% and T50% (the temperature where 10 and 50% weight loss occurred) of WPU films decreased with the rise of OH functionality of castor oil polyols, caused by the increase of hard segment content. Glass transition temperature increased with increasing OH functionality and SiO2 content. The hardness, adhesion and gloss quality of the polyurethane films were also determined with a view to assessing the effect of mole ratios of PET to glycol in glycolyzed products, the hydroxyl functionality and the SiO2 content.  相似文献   

7.
Novel organic–inorganic hybrid films were synthesised through the reaction of epoxidised castor oil (ECO) with γ-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). The amounts of GPTMS employed were sufficient to react with 25, 50 or 75% of the epoxy groups present in the ECO, whilst the mass proportions of ECO to TEOS varied from 90:10 to 70:30. Films were pre-cured at room temperature under an inert atmosphere, and subsequently submitted to thermal curing. Macro and microscopic properties of the films, including adhesion, hardness, swelling in toluene, microstructure (scanning electron microscopy) and thermal properties were determined as a function of the proportion of organic to inorganic precursor. Morphologic studies showed that the hybrid films were microscopically homogeneous when lower proportions of inorganic precursors were employed. Hardness and tensile strength increased, and swelling in toluene decreased, with the increase in the concentration of inorganic precursors. Good adhesion of the films to an aluminium surface was observed throughout the hybrid series.  相似文献   

8.
以异佛尔酮二异氰酸酯(IPDI)、蓖麻油(CO)和丙烯酸羟乙酯(HEA)合成了蓖麻油基聚氨酯丙烯酸酯(COPUA),以正硅酸乙酯(TEOS)和3-(异丁烯酰氧)丙基三甲氧基硅烷(MEMO)通过溶胶-凝胶法制备了改性硅溶胶,作为无机相与COPUA有机相复合得到了UV固化COPUA/SiO2杂化材料。调节MEMO与TEOS的配比得到一系列改性硅溶胶,通过测试确定了MEMO与TEOS的最佳配比为1:1(MT-1)。在此基础上,改变MT-1的添加量得到UV固化COPUA/SiO2杂化材料。用FT-IR、TEM、SEM、TGA等对杂化材料和涂层进行结构表征,测试复合涂层的力学性能和表面性能。当MT-1添加量为COPUA树脂质量的15%时,涂层内部SiO2粒子分布均匀,涂层表面光滑平整,光透过率达到100.2%,硬度为5H,附着力0级,柔韧性1mm;涂膜拉伸强度达到13.52MPa,断裂伸长率为7.49%。  相似文献   

9.
Two series of organic–inorganic hybrid films were prepared from epoxidised castor oil (ECO) and the inorganic precursor 3-aminopropyltriethoxysilane (APTES), and the combination of APTES with tetraethoxysilane (TEOS) with different organic to inorganic proportions. Films were pre-cured at room temperature under inert atmosphere and subsequently submitted to thermal curing. The macro- and microscopic properties of the films, including adhesion, hardness, microstructure and thermal properties, were determined as a function of the proportion of ECO to inorganic precursors. Morphologic studies showed that the hybrid films were microscopically homogeneous. The hardness and tensile strength of the films increased with increased concentrations of inorganic precursor. All of the films exhibited good adhesion to an aluminium surface and worked as an efficient barrier against corrosion.  相似文献   

10.
Organic–inorganic hybrid coatings based on fluorinated/methacrylated soybean oil and bisphenol A/F epoxy methacrylate were obtained by combining photopolymerization and sol–gel process. Hard and transparent hybrid coatings were prepared on polycarbonate panels and their physical and mechanical properties such as gel content, hardness, adhesion, gloss, contact angle as well as tensile strength were measured. Results from the mechanical measurements showed that the properties of hybrid coatings improved with the increase in fluorine and sol–gel precursor contents. Thermo gravimetric analysis results demonstrated that fluorine and silica incorporations significantly enhanced the thermal oxidative stability of the hybrid coating materials. The surface morphology was also characterized by scanning electron microscopy (SEM). SEM studies indicated that inorganic particles were dispersed homogenously throughout the organic matrix.  相似文献   

11.
In this study, hybrid materials based on epoxy resin were prepared as transparent self‐supported films by a sol–gel process. 4,4′‐Diaminodiphenylmethane or oligomeric epoxy resin were used as precursors, which were conveniently functionalized with trialkoxysilanes as end‐groups. The effect of the introduction of poly (dimethylsiloxane) was also investigated. The hybrid films showed good thermal stability, a nondefined glass transition temperature, and a dense morphology without phase segregation. The tendency to a flat surface could be observed by atomic force microscopy. The hybrid films also showed good performance as coatings for glass plates, with an improved hydrophobic character in comparison to neat epoxy resin. POLYM. ENG. SCI., 48:141–148, 2008. © 2007 Society of Plastics Engineers  相似文献   

12.
Synthesis and UV-curing of acrylated castor oil glycerides are described. Transesterification of castor oil with specific amounts of glycerol followed by conversion to castor oil acrylate esters lead to UV-curable binders with variable functionality per mass. The used raw materials are renewable, so that 100% bio-based resins can be obtained with this method. A possible purpose for these reactive binders is to balance the mechanical properties of hard radiation curable coatings.  相似文献   

13.
以正硅酸乙酯、钛酸丁酯、甲基丙烯酰氧基倍半硅氧烷(MPMS-SSO)、γ-环氧丙氧丙基三甲氧基硅烷为原料,通过溶胶-凝胶法制备了Si-Ti杂化涂料、甲基丙烯酰氧基倍半硅氧烷(MPMS-SSO)涂料、甲基丙烯酰氧基倍半硅氧烷与钛酸丁酯杂化的MPMS-SSO-Ti涂料,并在PMMA上成膜。用FT-IR、UV-VIS、动态摩擦减重测试和TG/DSC等对薄膜的结构、透光率、机械性能和热性能进行表征,并分析了Si-Ti、MPMS-SSO和MPMS-SSO-Ti 3种涂料对PMMA膜的影响。结果表明:Si-Ti、MPMS-SSO、MPMS-SSO-Ti光学保护膜在保持PMMA基片透光率基本不变的同时,有效地提高了耐磨性;MPMS-SSO薄膜的耐磨效果最好,MPMS-SSO膜次之,Si-Ti膜最次。从表面应力、预滑动摩擦力和动摩擦力3个方面分析有机无机杂化膜耐磨性能,能够有效解释涂覆Si-Ti、MPMS-SSO、MPMS-SSO-Ti涂料耐磨性依次提高的事实。Si-Ti、MPMS-SSO、MPMS-SSO-Ti薄膜热稳定性良好,其中MPMS-SSO-Ti薄膜耐热性最好。分析表明,微观上具有规整网络结构的倍半硅氧烷与TiO2杂化对提高薄膜的耐磨性能和热稳定性起着重要作用。  相似文献   

14.
New inorganic-organic hybrids were synthesized through the reaction of castor oil (CO) or epoxidized castor oil (ECO) with tetraethoxysilane (TEOS). The mass proportions of ECO/TEOS varied from 90∶10 to 60∶40, and films of the material were thermally cured. An IR spectroscopy analysis was performed, and macro- and microscopic properties such as adhesion, hardness, swelling in toluene, microstructure (scanning electron microscopy), and T g were investigated as a function of the proportion of their inorganic-organic precursor. Morphologic studies showed that the hybrid films were homogeneous when lower proportions of the inorganic precursors were used. Hardness and tensile strength increased with TEOS concentration, whereas swelling in toluene decreased with TEOS concentration. Good adhesion was observed throughout the hybrid series.  相似文献   

15.
The synthesis and properties of novel hybrid silsesquioxane‐containing urethane polymers using octakis(hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPOSS) as a crosslinker and a hydroxyl‐terminated polybutadiene were studied. Mixing of the OHPOSS with polyurethane prepolymer and chain extenders in solution was found to be successful when tetrahydrofuran was used as the solvent. Thin films of hybrid polyurethanes were obtained. The hybrid materials were elastomers with improved water and solvent resistivity and good thermal stability. The studied OHPOSS appeared to be an effective crosslinker of polyurethanes suitable for, for example, surface coatings applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2023–2030, 2013  相似文献   

16.
Bamboo tar is a natural resource of aromatic polyol obtained from a residue of by setting or distilling crude bamboo vinegar. In this study, the two‐packed polyurethane (PU) coatings were prepared by blending bamboo tar and castor oil varying with different weight ratios and polymeric toluene diisocyanate (PTDI) was used as a hardener at the NCO/OH molar ratio of 1.0. Six kinds of PU coatings were formulated and the viscosity, pot‐life, drying time, mechanical properties (hardness, tensile strength, impact resistance, adhesion, and abrasion resistance), gel content, durability, lightfastness, FTIR, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) were characterized. The results indicated that the bamboo tar containing PU film appearance is semitransparent yellow‐brown color and the wood texture could be kept after finishing. All PU films possessed excellent adhesion as well as durability. The increase in bamboo tar content led to shorten drying time of coatings and to increase in hardness, tensile strength, lightfastness, and thermal stability of films. From these results and due to a light smell flavor, it is suggested that the bamboo tar‐based PU coatings is suitable to be used as an exterior wood coatings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Titania-containing organic–inorganic hybrid sol–gel films have been developed as an alternative to chromate-based coatings for surface pretreatment of aluminium alloys. Stable hybrid sols were prepared by hydrolysis of 3-glycidoxypropyltrimethoxysilane and different titanium organic compounds in 2-propanol solution in the presence of small amounts of acidified water. Different diketones were used as complexing agents in this synthesis for controllable hydrolysis of titanium organics. The properties of the obtained coatings were compared with those of zirconia-containing films. Electrochemical impedance spectroscopy (EIS) measurements and standard salt spray tests were performed to investigate the corrosion protection performance of the hybrid coatings. It was revealed that their protective properties depend significantly on the nature of metalorganic precursors and complexing agents used in the process of sol preparation. The best anticorrosive protection of AA2024 in chloride solutions is provided by the titania-containing sol–gel films prepared with titanium(IV) tetrapropoxide and acetylacetone as starting materials. In the case of zirconia-containing films, better protective properties were found when applying ethylacetoacetate as a complexing agent.  相似文献   

18.
Inorganic–organic hybrid materials are attracting a strong scientific interest mainly for their outstanding inherent mechanical and thermal properties, which can be traced back to the intimate coupling of both inorganic and organic components. By carefully choosing the experimental parameters used for their synthesis, chemically and thermally stable acrylate-based hybrid material embedding the zirconium oxocluster Zr4O4(OMc)12, where OMcCH2C(CH3)C(O)O, can be deposited as UV-cured films on aluminium alloys.

In particular, the molar ratios between the oxocluster and the monomer, the polymerisation time, the amount of photo-initiator and the deposition conditions, by using an home-made spray-coating equipment, were optimised in order to obtain the best performing layers in terms of transparency and hardness to coat aluminium alloy (AA1050, AA6060 and AA2024) sheets. Furthermore, it was also evaluated whether the hybrid coatings behave as barrier to corrosion.

Several coated samples were prepared and characterised. Environmental scanning electronic microscopy (ESEM) and scratch test were used to investigate the morphology of the films and to evaluate their scratch resistance, respectively. Electrochemical impedance spectroscopy (EIS) was performed in order to evaluate if the coatings actually protect the metallic substrate from corrosion.

In order to measure shear storage modulus (G′) and loss modulus (G″) of the materials used for coatings, bulk samples were also obtained by UV-curing of the precursors solution. Dynamical mechanical thermal analysis (DMTA) was performed in shear mode on cured disks of both the hybrid materials and pristine polymer for comparison. The values of Tg were read off as the temperatures of peak of loss modulus. The length and mass of all the samples were measured before and after the DMTA analysis, so that the shrinkage of the materials in that temperature range was exactly evaluated.  相似文献   


19.
In this study, a series of castor oil based polyurethane/organically modified montmorillonite (OMMT) clay nanocomposite coatings have been successfully prepared by effective dispersing of OMMT nano-layers in polyurethane matrix through an ultrasonication assisted process. Effectiveness of ultrasonication process in de-agglomeration of clay stacks in castor oil dispersions was evaluated by optical microscopy and sedimentation test. Structure of nanocomposite coatings was investigated by wide angle X-ray diffraction (WAXD) and Fourier-transform infrared spectroscopy (FT-IR). The anticorrosive properties of nanocomposite coatings were characterized by electrochemical impedance spectroscopy (EIS), Tafel polarization study, water absorption and pull-off adhesion tests. The experimental results showed that PU/OMMT nanocomposite coatings were superior to the neat PU in corrosion protection effects. Also, it was observed that the corrosion protection of polyurethane organoclay nanocomposite coatings is improved as the clay loading is increased up to 3 wt.%.  相似文献   

20.
以正硅酸乙酯、钛酸丁酯、甲基丙烯酰氧基倍半硅氧烷(MPMS-SSO)、γ-环氧丙氧丙基三甲氧基硅烷为原料,通过溶胶-凝胶法制备了Si-Ti杂化涂料、甲基丙烯酰氧基倍半硅氧烷(MPMS-SSO)涂料、甲基丙烯酰氧基倍半硅氧烷与钛酸丁酯杂化的MPMS-SSO-Ti涂料,并在PMMA上成膜。用FT-IR、UV-VIS、动态摩擦减重测试和TG/DSC等对薄膜的结构、透光率、机械性能和热性能进行表征,并分析了Si-Ti、MPMS-SSO和MPMS-SSO-Ti 3种涂料对PMMA膜的影响。结果表明:Si-Ti、MPMS-SSO、MPMS-SSO-Ti光学保护膜在保持PMMA基片透光率基本不变的同时,有效地提高了耐磨性;MPMS-SSO薄膜的耐磨效果最好,MPMS-SSO膜次之,Si-Ti膜最次。从表面应力、预滑动摩擦力和动摩擦力3个方面分析有机无机杂化膜耐磨性能,能够有效解释涂覆Si-Ti、MPMS-SSO、MPMS-SSO-Ti涂料耐磨性依次提高的事实。Si-Ti、MPMS-SSO、MPMS-SSO-Ti薄膜热稳定性良好,其中MPMS-SSO-Ti薄膜耐热性最好。分析表明,微观上具有规整网络结构的倍半硅氧烷与TiO2杂化对提高薄膜的耐磨性能和热稳定性起着重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号