首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant oil based alkyd resin was prepared from jatropha oil and blended with epoxy resin. Subsequently, alkyd/epoxy/NiO nanocomposites with different wt % of NiO nanoparticles have been prepared by mechanical mixing of the designed components. The structure, morphology, and performance characteristics of the nanocomposites were studied by UV‐visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and universal testing machine (UTM). The alkyd/epoxy/NiO nanocomposites showed the gradual increase in thermal stability with increasing NiO content. With 3 wt % NiO content the tensile strength of the nanocomposite increased by 19 MPa (more than twofold) when compared with the pristine polymer. Limiting oxygen index (LOI) value of the nanocomposites indicate that the incorporation of NiO nanoparticles even in 1 wt % can greatly improves the flame retardant property of the nanocomposites. This study confirms the strong influence of NiO nanoparticles on the thermal, mechanical, and flame retardant properties of the alkyd/epoxy/NiO nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41490.  相似文献   

2.
Jatropha curcas oil based alkyd/epoxy/GO bionanocomposites were prepared by direct solution blending of alkyd/epoxy blend matrix with GO nano filler. Structures and properties of the bionanocomposites were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and tensile testing. X-ray diffraction and transmission electron microscopy study demonstrates the formation of highly exfoliated GO layers and its homogeneous dispersion throughout the polymer matrix with 1 and 3 wt% GO. However, the intercalated structure is predominant with 5 wt% GO. The homogeneous dispersion and the strong interaction of the GO layers and the polymer matrix induced the significant improvement in thermal and mechanical properties of the bionanocomposites. The tensile strength and elastic modulus of the bionanocomposite increased by 133% and 68% respectively with 3 wt% GO loading. The thermal stability of the bionanocomposite improved by 39 °C and Tg is shifted toward higher temperature by 20 °C as compared to the pristine polymer. Incorporation of GO significantly decreases the curing time of the alkyd/epoxy resin blend.  相似文献   

3.
研究了不同填充量的反应型和添加型含磷阻燃剂对阻燃环氧树脂力学性能和阻燃性能的影响,并对比研究了2种类型阻燃环氧树脂的热稳定性。结果表明,反应型阻燃剂中9,10-二氢-9-氧-10-磷杂菲-10-氧化物(DOPO)阻燃环氧树脂的力学性能和阻燃性能好于6-氢-二苯并[c,e][1,2]氧磷酰杂-6-甲醇,6-氧化物(DOPO-CH2OH),添加型阻燃剂中三聚氰胺磷酸盐(MP)阻燃环氧树脂的性能好于聚磷酸铵(APP);2种类型阻燃剂相比,2种反应型阻燃剂阻燃环氧树脂的力学性能、阻燃性能和热稳定性均好于添加型的MP和APP阻燃剂。  相似文献   

4.
刘明  凌鸿  蒋宝林  顾宜 《塑料工业》2012,40(4):106-110
针对双酚A型苯并噁嗪无法满足较高阻燃要求的缺陷,在双酚A型苯并噁嗪中引入含磷环氧、含氮酚醛,制备了三元共混浇铸体,通过测定凝胶化时间、差示扫描量热仪(DSC)、动态热机械分析(DMA)、热失重分析(TGA)、垂直燃烧、锥形量热等测试手段研究了共混体系固化反应及结构与性能间的关系。研究表明:在共混体系中,随着环氧树脂含量的增加,固化产物的初始储能模量和玻璃化转变温度均减小,同时还有效地发挥了固相、气相阻燃的作用;含氮酚醛的引入,除有效催化固化反应和降低固化反应温度外,还发挥了气相阻燃的作用。含磷环氧和含氮酚醛均能有效提高热稳定性和阻燃性能;含氮酚醛中的氮源比苯并噁嗪中的氮源对阻燃、提高热稳定性等性能所发挥的作用更明显。  相似文献   

5.
Water‐blown rigid polyurethane foam (PUF) with two different particle sizes (180 and 300 μm) of expandable graphite (EG) as a flame‐retardant additive were prepared, and the effects on the mechanical, morphological, water absorption, thermal conductivity, thermal, and flame‐retardant properties were studied. In this investigation, EG content was varied from 5 to 50 php by weight. The mechanical properties of PUF decreased with increasing EG loading in both cases. The water absorption of the PUF increased with an increase in the EG loading mainly because of the collapse of foam cells, as evidenced from the scanning electron microscopy pictures. The thermal conductivity of the EG‐filled PUF showed that the insulation properties decreased with EG loading. The flame‐retardant properties (limiting oxygen index and char yield measurement) of the PUF improved with increasing EG loading. PUF filled with the higher particle size EG showed better mechanical properties and fire‐retardant properties than the PUF filled with the lower particle size EG. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
党婧  王汝敏  韩小勇  程雷 《粘接》2010,(2):34-37
以双酚A环氧树脂E-51与DOPO(9,10-dihydrooxa-20-phosph henanthrene-10-oxide)合成含磷环氧树脂(ED),以三聚氰胺与苯酚反应制备含氮的酚醛固化剂MFP。采用红外光谱对产物进行分析表征,采用热失重分析和UL94V垂直燃烧测试考查树脂的热性能和阻燃性能,同时探讨了阻燃环氧树脂的力学性能。结果表明,随着含磷量的增加,环氧树脂的热稳定性和阻燃性能得到改善,当含磷量为3%时,环氧树脂的初始分解温度高达330℃以上,在700℃下的残炭率达到30%以上,阻燃性能均达到了UL-94 V—0级。而试样的力学性能则随含磷量的增加而降低。  相似文献   

7.
In this paper, ammonium polyphosphate(APP)/expandable graphite(EG)/thermoplastic polyurethane (TPU) composites were prepared by microlayer coextrusion technology, APP and EG fillers had good synergistic flame retardancy and excellent dispersion in TPU matrix, which greatly improved the flame retardancy and mechanical properties of multilayer composites. The dispersion of APP and EG in TPU was characterized by using SEM, the flame retardancy of composites was characterized by using UL94 and LOI, the thermal stability of composites was characterized by using TGA and DTG, and tensile test was used to characterized the mechanical properties of composites. SEM showed that the microlayer coextrusion technology significantly improved the dispersion of APP and EG in TPU. As showed by the experimental results, the vertical combustion level of ordinary blended composites reached V-2 after adding only one kind of filler either APP or EG, and the vertical combustion level of ordinary blended composites reached V-0 with APP and EG applied together, while the vertical combustion level of microlayer coextruded composites all reached V-0 when the total addition of APP and EG was 15%. In particular, the LOI value of microlayer coextruded composites was 30.9%, while the LOI value of ordinary blended composites only was 27.9% when APP: EG = 1: 1. At this time, the flame retardancy level of APP/EG/TPU composites was the best. In addition, the thermal stability and mechanical properties of microlayer coextruded composites were far superior to ordinary blended composites. In conclusion, the synergistic flame retardancy of APP and EG fillers and the dispersion of APP and EG fillers in TPU matrix played a significant role in enhancing flame retardancy and mechanical properties.  相似文献   

8.
In this article, high‐density polyethylene/ethylene vinyl‐acetate copolymer (HDPE/EVA) composites filled with two different particle sizes (45 and 150 µm) of expandable graphite (EG) were prepared by using a twin‐screw extruder. The thermal stability, flammability, and mechanical properties of HDPE/EVA/EG composites were investigated by thermogravimetric analysis (TGA), cone calorimeter test (CCT), tensile test, and scanning electron microscopy (SEM). The results from TGA and CCT indicated that EG significantly enhanced the thermal stability and fire resistance of HDPE/EVA blend. The thermal stability and flame retardancy of HDPE/EVA/EG composites were improved with decreasing particle size of EG. Although the onset of weight loss of the flame‐retardant composites occurred at a lower temperature than that of HDPE/EVA blend, the flame‐retardant composites produced a large amount of char residue at a high temperature. The consolidated char layer formed a barrier, which could reduce heat, low‐molecular transfer, and air incursion, and thus enhanced the flame retardancy. The data from the tensile test showed that the addition of EG deteriorated the mechanical properties; however, the tensile stress and strain of HDPE/EVA/EG composites increased with decreasing the particle size of EG owing to the strong interface adhesion between polymer matrix and inorganic particles. POLYM. ENG. SCI., 54:1162–1169, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
着重研究了环氧树脂/二乙基次膦酸铝(EP/OP930)阻燃材料的阻燃性能、热分解性能和力学性能。结果表明,OP930的含量仅需15 %(质量分数,下同)就可以使EP/OP930体系的极限氧指数达到29.8 %,垂直燃烧实验达到UL 94 V-0级标准;此外,EP/OP930体系的综合性能良好,不同OP930含量的阻燃材料的力学性能、热稳定性能与原材料相比变化不大。  相似文献   

10.
A liquid silicon/phosphorus containing flame retardant (DOPO–TVS) was synthesized with 9,10‐dihydro‐9‐oxa‐10‐phosphapheanthrene‐10‐oxid (DOPO) and triethoxyvinylsilane (TVS). Meanwhile, a modified epoxy resin (IPTS–EP) was prepared by grafting isocyanate propyl triethoxysilane (IPTS) to the side chain of bisphenol A epoxy resin (EP) through radical polymerization. Finally, the flame retardant (DOPO–TVS) was incorporated into the modified epoxy resin (IPTS–EP) through sol–gel reaction between the ethyoxyl of the two intermediates to obtain the silicon/phosphorus containing epoxy resin. The molecular structures of DOPO–TVS, IPTS–EP and the final modified epoxy resin were confirmed by FTIR spectra and 1H‐NMR, 31P‐NMR. Thermogravimetric analysis (TGA), differential scanning calorimetry, and limiting oxygen index were conducted to explore the thermal properties and flame retardancy of the synthesized epoxy resin. The thermal behavior and flame retardancy were improved. After heating to 600°C in a tube furnace, the char residue of the modified resin containing 10 wt % DOPO–TVS displayed more stable feature compared to that of pure EP, which was observed both by visual inspection and scanning electron microscope (SEM). Moreover, the mechanical performance testing results exhibited the modified epoxy resins possessed elevated tensile properties and fracture toughness which is supported by SEM observation of the tensile fracture section. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42788.  相似文献   

11.
以磷酸、三聚氰胺、尿素为原料制备阻燃抑烟剂聚磷酰氰胺脲,然后将其应用于TDE-85#环氧树脂中,以顺丁烯二酸酐为固化剂制备了阻燃抑烟环氧树脂。研究了阻燃抑烟剂聚磷酰氰胺脲的吸湿性,纯环氧树脂和阻燃抑烟环氧树脂的极限氧指数、UL-94阻燃性、隔热性能、烧蚀速率和透光率等。研究结果表明,聚磷酰氰胺脲对环氧树脂具有非常优异的阻燃、抑烟功效。  相似文献   

12.
采用氢氧化镁(MH)、膨胀石墨(EG)和有机蒙脱土(OMMT)为阻燃剂制备了无卤阻燃线性低密度聚乙烯(LLDPE),研究了OMMT对LLDPE/EG/MH阻燃性能和力学性能的影响。结果表明:少量OMMT的加入,可以有效改善LLDPE/EG/MH的力学性能、阻燃性能和热稳定性。当OMMT质量分数为3.0%时,LLDPE/EG/MH/OMMT的拉伸强度和冲击强度分别为1.4 MPa和26.5 kJ/m~2;极限氧指数为35.0%,符合UL-94 V-0级;其热释放速率峰值、平均热释放速度、生烟速率和总生烟量比LLDPE/EG/MH的低。  相似文献   

13.
以可发性聚苯乙烯(EPS)为基材,利用酚醛树脂(PF)作为包覆剂,可膨胀石墨(EG)作为阻燃剂,利用包覆法,制备了一种无卤环保、阻燃性能好、力学性能优良的热固性PS外墙泡沫保温板。研究了PF与EG对EPS保温板阻燃及力学性能的影响,探究了阻燃机理。结果表明,使用PF作为包覆剂制得的EPS/PF泡沫保温板力学性能尤其是压缩强度明显提高,当PF用量为90份时,LOI值可由18%提升至27.9%;阻燃剂EG的加入,使得保温板的阻燃性能及压缩性能进一步提高,当添加4份的EG时,保温板的压缩强度最高,LOI值达到了29.4%,垂直燃烧等级达到V–0级,残炭率由纯EPS的10%提高到50%。  相似文献   

14.
In recent years, the poor weather resistance and aging resistance of additive flame retardants have caused researchers to pay attention to reactive flame retardants. A novel P-N coacting epoxy curing agent with intrinsic flame retardancy was designed and synthesized. The mechanical properties, crosslinking curing properties and flame-retardant properties of intrinsic flame-retardant epoxy resin were characterized. The results show that the cross-linking curing performance of hexa (3,5-diamino-1,2,4 triazolyl)-cyclotriphosphonitrile) (VCP) is lower than that of DDM. This is due to the decrease in cross-linking density caused by the VCP ring molecular structure. Therefore, the mechanical properties of the epoxy resin cured with VCP decreased, but the flame-retardant properties of the material significantly improved. The limiting oxygen index of the VCP/EP flame retardant epoxy thermosets was 27.3%, reaching the UL 94 V-1 level. The peak heat release rate and total heat release rate of the VCP/EP flame retardant epoxy thermosets were significantly reduced. The flame retardancy mechanism was studied by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and x-ray photoelectron spectroscopy. The results show that the intrinsic flame-retardant P-N coacting epoxy resin has excellent curing and flame-retardant properties.  相似文献   

15.
通过熔融共混工艺,利用双螺杆挤出机制备了聚对苯二甲酸乙二酯(PET)/玻璃纤维(GF)/溴化环氧树脂共混体系,研究了各组分对共混体系力学性能和阻燃性能的影响。结果表明,GF含量的增加不仅可以全面提高共混体系的力学性能,而且可以提高共混体系的阻燃性能;随着阻燃剂溴化环氧树脂含量的增加,共混体系的阻燃性能显著改善,但力学性能稍有下降。  相似文献   

16.
A novel reactive diol, bis-biphenyloxy (4-hydroxy) phenyl phosphine oxide (BBPHPPO) which contains both biphenylyl and phenyl phosphonic groups was synthesized. Flame retardant advanced epoxy resin was obtained by chain extension of diglycidyl ether of bisphenol-A (DGEBA) with the phosphorus-containing diol (BBPHPPO). The thermal properties and flame retardancy of cured epoxy resin were studied. The resulting BBPHPPO containing epoxy system exhibited higher glass transition temperature than that of advanced epoxy resins prepared from bisphenol-A (BA) and tetrabromobisphenol-A (TBBA). The high char yield and the high LOI value were observed to prove the excellent flame retardancy of this phosphorus-containing epoxy resin.  相似文献   

17.
Epoxy resins are widely used as coatings, adhesives and primers and in semiconductor encapsulation. A requirement that has recently gained importance is that of flame resistance, and imparting flame retardancy to epoxy resins has attracted much attention. Expandable graphite (EG) can improve flame‐retardant properties of polymers. Due to poor compatibility between polymer matrix and EG, flame‐retardant performance will be impaired. EG can be functionalized using a coupling agent. This gives rise to covalent bonding between organic and inorganic phases. This will improve the compatibility between filler and polymer to enhance the thermal stability of composites. X‐ray photoelectron spectroscopy was used to characterize the functionalizing reaction between coupling agent and EG. Thermogravimetric analysis (TGA) and integral procedural decomposition temperature (IPDT) were used to calculate the thermal stability of composites. The results show that functionalized EG can improve the thermal stability of the composites. TGA/mass spectroscopy (MS) shows that the amount of toxic gases liberated from the composites is less than that from pure epoxy. Novel epoxy/EG composites were prepared successfully via the sol–gel method. The results of TGA, IPDT and TGA/MS showed that functionalized EG can enhance the thermal stability of composites and can suppress the production of toxic gases. The composite materials could provide a safer choice. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
将环氧树脂和多聚磷酸直接反应后用氨水中和,制得了含磷18.5%且与环氧树脂相容性较好的新型环氧多聚磷酸铵(EPPA)阻燃剂。用极限氧指数、冲击强度、硬度、热失重等测试方法研究了EPPA对环氧树脂二乙烯三胺固化物阻燃性以及其它各种性能的影响。实验结果表明该阻燃剂对环氧树脂固化物有较好的阻燃作用,适量添加EPPA可大幅提高固化物的韧性,并且对固化物的硬度以及热稳定性影响不大。  相似文献   

19.
徐伟华 《塑料工业》2022,50(1):79-83
将低聚倍半硅氧烷(POSS)和一种高效9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)衍生物(D-bp)通过化学键合的方式引入到环氧树脂的固化体系中制备了有机-无机杂化环氧树脂,并对其阻燃性能和力学性能进行分析。结果表明,有机-无机杂化环氧树脂表现出优异的综合性能,当磷含量仅为0.25%时,有机-无机杂化环氧树脂的阻燃级别能达到UL94 V-0级,峰值热释放速率(p-HRR)、总热释放量(THR)和有效燃烧热(EHC)为515.7 kW/m2、157.2 MJ/m2和23.9 MJ/kg,分别降低了45.1%、22.1%和24.4%,力学性能也有明显改善。  相似文献   

20.
An intumescent flame‐retardant, hex(4‐carboxylphenoxy) cyclotriphosphazene (HCPCP) was synthesized and covalently grafted on to the surface of multiwalled carbon nanotubes (MWNTs) to obtain MWNT‐HCPCP. MWNT/epoxy resin (EP) and MWNT‐HCPCP/ EP nanocomposites were prepared via thermal curing. Transmission electron microscopy results showed that a core–shell structure with MWNTs as the hard core and HCPCP as the soft shell were formed after HCPCP (10 wt%) were attached to the MWNTs. The results of flammability tests showed an increased limited oxygen index value for MWNT‐HCPCP/EP nanocomposites. The mechanical properties including tensile strength and elongation were both dramatically improved due to the better dispersion of MWNT‐HCPCP in the EP matrix. The grafting of HCPCP can improve both the dispersion of nanotubes in polymer matrix and flame retardancy of the nanocomposites. POLYM. COMPOS., 35:2187–2193, 2014. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号