首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Aqueous dispersions of castor oil-based polyurethane (PUCO)/aromatic polyamide sulfone (APAS) block copolymers (PUCO-co-APAS) were successfully synthesized via a copolymerization reaction. PUCO was prepared by an emulsion polymerization process in four steps, namely isocyanate-terminated prepolymer preparation step (PUCONCO), neutralization step, chain extension step and dispersion step, using castor oil (CO), toluene diisocyanate (TDI), dimethylol propionic acid (DMPA) and ethylene diamine (EDA) as a chain extender. APAS was prepared by a polycondensation reaction between bis(4-aminophenyl)sulfone (in molar excess) and terephthaloyl chloride to produce amino-terminated APAS. Three PUCO-co-APAS were prepared via a copolymerization reaction between the amino-terminated APAS and isocyanate-terminated PUCONCO prepolymer. APAS, PUCO and PUCO-co-APAS copolymers were characterized using FTIR, 1H NMR, particle size distribution (PSD), zeta potential (ZP), thermal analysis (DSC and TGA) and GPC. The effect of the copolymerization process on the thermal, chemical, physical and mechanical properties of PUCO films was studied. The obtained results revealed that the mean particle size of PUCO decreased from 80 nm to 46–49 nm after the copolymerization process. Additionally, narrower size distribution was obtained by the copolymerization process. However, the molecular weight increased with increasing the amount of APAS in the copolymer chains. The copolymerized samples showed better thermal stability than PUCO as a result of the stronger hydrogen bonds and the rigid aromatic groups introduced by APAS in the copolymeric chains.  相似文献   

2.
Waterborne castor oil-recycled polyol based polyurethane-silica nanocomposite adhesives (WPU) with polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. A series of waterborne polyurethane adhesives with hard segment contents from 71.3 to 74.5 wt%, were synthesized using an isophorone diisocyanate, 2-bis(hydroxymethyl) propionic acid, recycled castor oil-based as soft segments and (3-aminopropyl)triethoxysilane (APTES) as chain extender. The depolymerized oligoester obtained from glycolysis of poly(ethylene terephthalate) (PET) waste using triethylene glycol (TEG), was transesterified with castor oil (CO) which resulted in the formation of hydroxyl-functional polyester polyol, with hydroxyl value of 414 mgKOH g−1. The molecular structures and mass of glycolyzed PET oligoesters, castor oil-based polyol and castor oil-based polyurethane-silica nanocomposite adhesives were estimated by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The structure and properties of the resulting films were investigated by FTIR, wide angle X-ray diffraction measurement (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). TG analysis indicated that APTES can improve the thermal stability of WPU. XRD showed that the crystallinity of WPU decreased with the increase alkoxysilane content. The extent of crosslinking was investigated to show a dependence on silica concentration, which increased the glass transition temperature and particle size of polyurethane nanocomposites with increasing alkoxysilane content due to the condensation of the alkoxysilane groups. The hardness, adhesion and gloss quality of the polyurethane films were also determined considering the effect of APTES content, so this paper confirmed the suitability of using these castor oil-based waterborne polyurethane-silica nanocomposites as new adhesive materials with high performance coatings materials. The experimental results reveal that the APTES and the hard segment content play a key role in controlling the structure and properties of the PU cast films based on castor oil-recycled polyols.  相似文献   

3.
21st Century is treated as the century for highly branched macromolecules, because of their unique structural architecture and outstanding performance characteristics, in the field of polymer science. In the present study, castor oil-based two hyperbranched polyurethanes (HBPUs) were synthesized via A2 + B3 approach using castor oil or monoglyceride of the castor oil as the hydroxyl containing B3 reactant and toluene diisocyanate (TDI) as an A2 reactant along with 1,4-butane diol (BD) as the chain extender and poly(?-caprolactone) diol (PCL) as a macroglycol. The adopted ‘high dilution and slow addition’ technique offers hyperbranched polymers with high yield and good solubility in most of the polar aprotic solvents. Fourier transforms infra-red spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed the chemical structure of synthesized polymers, while wide angle X-ray diffraction (WXRD) and scanning electron microscope (SEM) resulted the insight of their physical structures. The degree of branching was calculated from 1H NMR and found to be 0.57 for castor oil based hyperbranched polyurethane (CHBPU), while it was 0.8 for monoglyceride based hyperbranched polyurethane (MHBPU). The studies showed that MHBPU and CHBPU exhibited tensile strength 11 MPa and 7 MPa, elongation at break 695% and 791%, scratch hardness 5 kg and 4.5 kg, gloss 84 and 72, respectively. Thermal properties like thermo stability, melting point, enthalpy, degree of crystallinity and glass transition temperature (Tg); and chemical resistance in different chemical media were found to be almost equivalent for both the polyurethanes. The measurements of dielectric constant and lost factor indicated that both the HBPUs behave as dielectric materials. Thus the synthesized HBPUs have the potential to be used as advanced surface coating materials.  相似文献   

4.
Hyperbranched polyurethanes were synthesized from poly(ε‐caprolactone) diol as a macroglycol, butanediol as a chain extender, a monoglyceride of a vegetable oil (Mesua ferrea, castor, and sunflower oils separately) as a biobased chain extender, triethanolamine as a multifunctional moiety, and toluene diisocyanate by a prepolymerization technique with the A2 + B3 approach. The structure of the synthesized hyperbranched polyurethanes was characterized by 1H‐NMR and X‐ray diffraction studies. M. ferrea L. seed‐oil‐based polyurethane showed the highest thermal stability, whereas the castor‐oil‐based one showed the lowest. However, the castor‐oil‐based polyurethane exhibited the highest tensile strength compared to the other vegetable‐oil‐based polyurethanes. All of the vegetable‐oil‐based polyurethanes showed good shape fixity, although the castor‐oil‐based polyurethane showed the highest shape recovery. Thus, the characteristics of the vegetable oil had a prominent role in the control of the ultimate properties, including the shape‐memory behaviors, of the hyperbranched polyurethanes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39579.  相似文献   

5.
In recent years, a lot of interest has been given to renewable resources for their environmental friendliness and potential biodegradability in the synthesis of urethane-derived polymers. In this work, UV-curable castor oil-based polyfunctional polyurethane acrylate (COPUA) was prepared by the reaction of isophorone diisocyanate (IPDI) with castor oil and pentaerythritol triacrylate (PETA). The structures and molecular weights of the targeted IPDI–PETA and COPUA were characterized by FTIR, 1H NMR, and GPC, respectively. In addition, the effect of reactive diluent content on damping properties, thermal stabilities, and mechanical properties of COPUA was characterized by dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and universal test machine. DMA revealed the copolymers had a glass transition temperature (T g) from 31.81 to 48.09°C. TGA showed that thermal initial decomposition temperatures were above 344.5°C, indicating the copolymers had certain thermal stability. Finally, some physical properties of curing films were studied by the contact angle and water absorption, and the results showed that the coatings exhibited good hydrophobicity. The COPUA obtained from castor oil can be used as eco-friendly materials and other applications alternative to the use of other petrochemicals in coatings.  相似文献   

6.
A novel hybrid diol (HD) crosslinker has been synthesized with hydrolyzable –Si–OR groups from 3-amino propyl trimethoxy silane and 3-glycidoxy propyl trimethoxy silane. Its chemical structure was confirmed by Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy to introduce it as a crosslinker in the castor oil, a renewable resource, to develop functional organic inorganic hybrid coatings. A series of castor oil-based organic–inorganic hybrid materials were prepared from castor oil, isophorone diisocyanate, and the different weight percentages of synthesized HD. Dynamic mechanical thermal analysis, thermogravimetric analysis, differential scanning calorimetry, and the universal testing machine were employed to characterize the hybrid films. The measured properties were found to be strongly influenced by the weight ratio of HD to the castor oil-based polyurethanes. The glass transition temperatures (T g) for the cured hybrid films were found to be 26–72°C. Antibacterial activity, in vitro hydrolytic degradation, and swelling properties of the hybrid films have been studied. The cured hybrid films exhibited excellent antibacterial activity, which was enhanced with addition of the HD. The alkoxy silane-crosslinked castor oil-based coatings have shown better mechanical and viscoelastic properties in comparison to the control (uncrosslinked castor oil-based polyurethane-urea) coatings. The results showed that the weight percent of the HD is the main factor that controls the thermal, antimicrobial, mechanical, swelling, and degradation properties of these hybrid films.  相似文献   

7.
Hyperbranched alkyd was synthesized by single‐step approach using trimethylolpropane, mono pentaerythritol as core material, and 2,2‐bis(methylol)propionic acid (DMPA), a combination of dehydrated castor oil fatty acid and coconut oil fatty acid as chain extender. A series of hyperbranched alkyds were prepared at different degree of branching in the alkyd structures by changing the amount of DMPA in the alkyd resin formulation. The resins were characterized by Fourier transform infrared and 1H‐nuclear magnetic resonance (NMR) spectroscopic technique. These hyperbranched alkyds were converted into polyurethane coating after reaction with hexamethylene diisocyanate trimer at a definite ratio in the presence of dibutyltin dilaurate as a catalyst. The effect of branching and polymeric chain entanglement on the glass transition temperature, Tg of the alkyd polyurethane coating (APUC) was studied by differential scanning calorimetry technique. The performance of such APUC in terms of gloss, gloss retention under accelerated QUV radiation, natural outdoor exposed condition, mechanical, and corrosion resistance properties were enhanced with the increase of polymeric chain entanglement, i.e., compactness or higher order of branching in the alkyd resin structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45835.  相似文献   

8.
This study presents an experimental essay on the production of thermoplastic polyurethanes for flexographic printing ink applications. Four formulations were obtained by step-growth polymerization reactions having the pre-polymer 4,4′-diphenylmethylene diisocyanate and Voranol 2120 L® catalyzed by dibutyltin dilaurate as common ground. In the chain extension step, ethanol or ethyl acetate was used as solvent, and the use or not of castor oil as a chain extender in addition to hexanedioic acid and 2,2′-oxydi(ethan-1-ol) was evaluated. The chemical structures of the synthesized thermoplastic polyurethanes (TPUs) were evaluated by Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, differential scanning calorimetry, and rheological features were assessed by density and viscosity analysis. The TPU resins were used to produce flexographic printing inks and further tested by friction, adhesion, gloss, and Gardner viscosity essays. It was found that the castor oil presence enhanced ink viscosity in 66% (from 26,790 to 44,440 Pa s) as well as improved strength. Formulations using ethanol as solvent showed the best results. The experiments were carried in a 250 ml reactor and then, scaled up to 2000 ml, keeping the power transfer per unit of volume constant at around 0.8 W/L. The analytical results from the larger scale were as good as the obtained in scale one, showing promising application.  相似文献   

9.
Glycolysis of poly(ethylene terephthalate) (PET) waste using different molar ratio of poly(ethylene glycol) (PEG400), was used to produce saturated hydroxyl-functional polyester polyols with castor oil (CO) by transesterification process. The waterborne polyurethane (WBPU) adhesives were synthesized from these saturated polyester polyols, isophorone diisocyanate (IPDI), dimethylolpropionic acid (DMPA), and hexamethoxymethyl melamine (HMMM) as cross-linking agent by a conventional prepolymer process. The glycolyzed polyols and polyester polyos formations were characterized using Fourier transform infrared spectroscopy (FTIR) and the molecular weights were determined using gel permeation chromatography (GPC). The cross-linking reaction between WBPU and HMMM was verified using FTIR and 1H NMR analysis. Thermal properties were investigated by thermogravimetric analysis (TG). Thermal stability of cross-linked WBPU significantly increased with decreasing castor oil content in the process of transesterification to obtain polyester polyol as a soft segment. The T15% and T50% (the temperature where 15 and 50% weight loss occurred) of WBPU increased with the decreasing of castor oil content in the obtained polyester polyols, caused by the steric hindrance of polyester polyol with higher castor oil content, in the process of cross-linking reactions with HMMM. The physico-mechanical properties of WBPU, such as hardness, adhesion test, and gloss of the dried films were also determined considering the effect of participation of HMMM in cross-linking reactions with polyurethane, on coating properties.  相似文献   

10.
谢友利  周永红 《精细化工》2012,29(11):1053-1055,1060
以蓖麻油酸甲酯为起始原料,与N,N-二甲基-1,3-丙二胺和溴化苄、溴乙烷通过酰胺化反应和季铵化反应生成了新型蓖麻油基季铵盐,其结构经FTIR、1HNMR、13CNMR及ESI-MS进行了确证。采用抑菌圈直径法对目标产物的抑菌性能进行了测试,结果表明,两种季铵盐均有一定的抑菌活性,N,N-二甲基-N-乙基-蓖麻油酸酰胺丙基溴化铵的抑菌活性略强于N,N-二甲基-N-苄基-蓖麻油酸酰胺丙基溴化铵。  相似文献   

11.
A series of waterborne polyurethane (WBPU) adhesives were prepared with various ratios of polyol, poly(tetramethylene oxide glycol) (PTMG), and chain extender, ethylene diamine (EDA), at a fixed content of diisocyanate, 4,4-dicyclohexylmethane diisocyanate (H12MDI) and hydrophilic agent, 2,2-dimethylol propionic acid (DMPA). WBPU adhesives were characterized by IR and 1H-NMR spectroscopies, X-ray diffraction (XRD) and gel permeation chromatography (GPC). It was found that the extent of hydrogen bonds between hard–hard segment (i.e., hydrogen bonds between the NH and carbonyl groups) increased with increasing chain extender content (decreasing polyol content). Moreover, the disordered hydrogen bond of carbonyl group (hydrogen bond of urethane groups in the interfacial region) increased with increasing chain extender content (decreasing polyol content). The cyclic urea and allophanate group, which are attributed to the side reaction and cross-linking reaction, respectively, were found above a molar ratio 0.17 of chain extender to diisocyanate. The adhesive strength was maximum with 0.95 wt% and 63.10 wt% chain extender and soft segment (PTMG), respectively (H2 sample) at room temperature for the WBPU adhesive. However, with increasing application temperature the adhesive strength decreased for all samples.  相似文献   

12.
Waterborne polyurethane (WBPU) adhesives were prepared using poly(tetramethylene oxide glycol), 4,4’-dicyclohexylmethane diisocyanate (H12MDI), hydrophilic agent dimethylol propionic acid and chain extender of 2,2,3,3-tetrafluoro-1,4-butanediol (TFBD), ethylene diamine (EDA), and 1,4-butanediol. All three chain extenders have been used as single and mixed (different ratio) content during synthesis, and the effect of chain extender and their content to the properties of tensile strength, Young’s modulus, water swelling (%), and adhesive strength was investigated. The adhesive strength value was higher using EDA as a single-chain extender; however, the potentiality of adhesive strength under water was improved using mixed-chain extenders of EDA and TFBD in WBPU adhesives. The maxima potentiality was observed with 6.31 mole% TFBD and 2.10 mole% EDA in WBPU adhesives.  相似文献   

13.
The biobased chain extended polyurethane (PU) was synthesized by reacting castor oil based polyol with different diisocyanates [toluene‐2,4‐diisocyanate (TDI) and hexamethylene diisocyanate (HMDI)] and chain extender such as glutaric acid. Biocomposites have been fabricated by incorporating the silk fiber into both TDI‐ and HMDI‐based PUs. The effect of incorporation of silk fiber into TDI‐ and HMDI‐based neat PU on the physicomechanical properties such as density, surface hardness, tensile strength, and percentage elongation have been investigated. The dynamic mechanical properties and the thermal stability of neat PUs and the silk fiber incorporated PU composites have been evaluated. The TDI‐based neat PU has showed higher mechanical properties compared to HMDI‐based PU. The incorporation of 10% silk fiber into TDI‐ and HMDI‐based PU resulted in an enhancement of tensile strength by 1.8 and 2.2 folds, respectively. The incorporation of silk fiber into biobased chain extended PU increased the glass transition temperature (Tg) of the resultant biocomposites. The morphology of tensile fractured neat PUs and their biocomposites with silk fiber was studied using scanning electron microscope (SEM). POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
有机硅改性聚氨酯乳液的研制   总被引:19,自引:0,他引:19  
将甲苯二异氰酸酯加到聚醚二元醇和端羟基有机硅单体的混合物中进行反应,生成端基为异氰酸酯基的聚氨酯预聚体,用1,4-丁二醇进行扩链反应,之后用二羟甲基丙酸进行亲水扩链,然后用三乙胺中和,最后加水乳化,合成了一种有机硅改性聚氨酯乳液。通过傅立叶红外光谱,DSC,TGA,电子拉力试验机,吸水率测试对其进行了研究。结果表明,有机硅改性的聚氨酯材料其耐水性、耐热性和耐低温性有所提高,本体的力学性能也有所提高。  相似文献   

15.
The development of vegetable oil-based polymers was particularly suitable for the era of increasingly scarce petroleum. Self-colored castor oil-based waterborne polyurethanes (PUs) were successfully synthesized based on castor oil and 1-amino-4-hydroxy-2-(6-hydroxyhexyl) anthraquinone (DR) as polyols. The UV–Vis spectrum showed that the addition of carboxylic acid groups make the spectrum of the PU produce the hyperchromic effect under alkaline conditions. Castor oil-based waterborne colored PUs possessed excellent stability under weak alkaline conditions. The connection of castor oil caused the PU to constitute soft polymer networks. PU coatings on cotton fabrics possessed excellent color properties. The urethane groups in the PUs formed hydrogen bonds with the hydroxyl groups on the cotton fibers and the polymer network structure formed by the PU coating itself made the color fastness of the cotton coatings reached grade 5. With the increase of castor oil content, the degradation rate of castor oil-based waterborne colored PU increased from 3.45% to 3.65%. This work provides a way to impart excellent color properties and fastness to PU coatings by inserting dye molecules and vegetable oils into the PU macromolecular chain.  相似文献   

16.
Urethane elastomers with a wide range of properties were prepared by reaction of toluene diisocyanate, diphenylmethane diisocyanate or an aliphatic diisocyanate with a series of castor oil derivatives. The castor derivatives included amides prepared by reaction of castor oil with mono- or dialkanolamines, amides of ricinoleic acid with long chain di- and triamines, butanediol diricinoleate and the commercial products-castor oil itself and the monoricinoleates of propylene glycol and pentaerythritol. Elastomers were also prepared from commercial polyether diols for comparison. Properties evaluated include hardness, resilience, tear strength, stress-strain properties, compression set and resistance to water and oil. Particularly high tensile and tear strengths were obtained from the amides. Softer products with good properties were obtained from propylene glycol monoricinoleate and from mixtures of the amides with castor oil or butanediol diricinoleate. Improved products were obtained by the use of diphenylmethane diisocyanate in place of toluene diisocyanate. Presented at the AOCS Meeting, Los Angeles, April 1972. ARS, USDA.  相似文献   

17.
A series of toughened epoxy systems was prepared via crosslinking of diglycidyl ether of bisphenol A with castor oil‐based polyamidoamines as curing agents. To this aim two series of polyamidoamines were synthesized in two steps from the reaction of castor oil with triethylenetetramine and then reaction of these products with dissolved salicylic acid in dimethyl formamide (DMF). The structure of the compounds was confirmed by FTIR spectra, GC‐Mass and 1H‐NMR spectroscopy. The mechanical properties, adhesion and water resistance of polyamine and polyamidoamines cured epoxy systems were studied. It was found that significant improvement in toughness and adhesion of the epoxy films was achieved by using polyamidoamines as curing agents. The results showed a great enhancement in toughness and adhesion properties of the epoxy coats proportional to increasing castor oil weight ratio, and/ or using salicylic acid and DMF. Furthermore, polyamidoamines cured samples showed higher water resistance and less degradation in hot water immersion tests than polyamine cured samples. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Castor oil is the only major natural vegetable oil that contains a hydroxyl group and so it is widely used in many chemical industries, especially in the production of polyurethanes. In this work, castor oil was interesterified with jatropha oil and the product was subsequently reacted with toluene diisocyanate to obtain urethane alkyd. The prepared urethane alkyd was characterized and its properties were determined and compared with those of the conventional (glycerol/jatropha oil) and commercial urethane alkyds. The castor oil/jatropha oil-based urethane alkyd had a lower molecular weight and viscosity, a slightly lower hardness and greatly longer drying time than the conventional and commercial urethane alkyds, but otherwise the film properties were broadly similar, including being very flexible, with an excellent adhesion and high impact resistance. In addition, they also exhibited excellent resistance to water and acid.  相似文献   

19.
Interpenetrating polymer networks (IPNs) of castor oil-based polyurethanes and polystyrene were prepared by simultaneous polymerization. The liquid prepolyurethanes were formed by reacting the hydroxyl functionality of castor oil with isophorone diisocyanate using different stoichiometric NCO/OH ratios. These prepolyurethanes were mixed with styrene monomer and subsequently polymerized by free radical polymerization initiated by benzoyl peroxide in the presence of the crosslinker 1,4-divinyl benzene. The interpenetrating polymer networks. PU/PS IPNs, were obtained as tough and transparent films by the transfer moulding technique. These IPNs were characterized by the static mechanical properties (tensile strength, Young's modulus and % elongation), thermal properties and morphology. The dielectric relaxation properties (σ, E′, E″ and tanδ) of the IPNs at different temperatures were studied.  相似文献   

20.
高固含量水性聚氨酯的合成及工艺研究   总被引:2,自引:0,他引:2  
以异佛尔酮二异氰酸酯(IPDI)、聚己二酸乙二醇酯(721)、聚四氢呋喃二醇(PTHF)为基本原料,以2,2-二羟甲基丙酸(DMPA)和磺酸盐(HSJ)为亲水扩链剂,采用自乳化和外乳化相结合的方法合成阴离子型高固含水性聚氨酯乳液;考察了R值、聚酯/聚醚(—OH物质的量)比、DMPA、磺酸扩链剂和外乳化剂用量对乳液性能的影响。结果表明:R值为1.4,聚酯/聚醚(—OH物质的量)比为2:1,DMPA用量为1.6%,磺酸扩链剂为0.25%,外乳化剂用量为1.6%时,合成的乳液固含量可高达55%,黏度低,力学性能优异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号