首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
海洋生物污损是一个世界性难题,随着人们环境保护意识的增强,发展有效的环保型海洋防污体系成为该领域最重要的研究方向。有机硅/氟基海洋防污涂料具有环保无毒的特点,是目前的研究热点之一。文章概述了有机硅和氟低表面能防污涂料的研究进展,重点介绍了基于仿生原理的有机硅/氟污损释放型防污涂料,论述了材料表面特性包括物理特性、化学特性、结构特征等对生物附着的影响,介绍了两亲性添加剂改性的有机硅防污涂料的开发,展望了污损释放型防污涂料未来的发展方向。  相似文献   

2.
Polymer brush coatings for combating marine biofouling   总被引:4,自引:0,他引:4  
A variety of functional polymer brushes and coatings have been developed for combating marine biofouling and biocorrosion with much less environmental impact than traditional biocides. This review summarizes recent developments in marine antifouling polymer brushes and coatings that are tethered to material surfaces and do not actively release biocides. Polymer brush coatings have been designed to inhibit molecular fouling, microfouling and macrofouling through incorporation or inclusion of multiple functionalities. Hydrophilic polymers, such as poly(ethylene glycol), hydrogels, zwitterionic polymers and polysaccharides, resist attachment of marine organisms effectively due to extensive hydration. Fouling release polymer coatings, based on fluoropolymers and poly(dimethylsiloxane) elastomers, minimize adhesion between marine organisms and material surfaces, leading to easy removal of biofoulants. Polycationic coatings are effective in reducing marine biofouling partly because of their good bactericidal properties. Recent advances in controlled radical polymerization and click chemistry have also allowed better molecular design and engineering of multifunctional brush coatings for improved antifouling efficacies.  相似文献   

3.
During the past decades, much effort has been made to find efficient alternative solutions to prevent and/or disrupt the adhesion of fouling organisms to surfaces. The use of enzymes emerges among the investigated approaches as one of the favorite candidate antifouling technologies due to enzymes' biodegradability and affordable prices. An overview of the different enzymatic antifouling strategies is presented, highlighting the most promising groups of enzymes, and their utilization upon surface-confinement to control biofouling. While the main strategies to control marine biofouling include the degradation of secreted adhesives and the production of antifouling compounds, the main concepts to control pathogenic biofilms are based on cell lysis and on the degradation of extracellular matrix polymers. Although immobilization can improve enzyme stability, activity and antifouling performance, up to date relatively few scientific articles concerning the use of immobilized enzymes to control biofouling have been published. The successful incorporation of enzymes into coatings yielding surfaces with broad antifouling spectrum and long-term efficacy remains a challenge.  相似文献   

4.
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose–lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.  相似文献   

5.
The international trade by marine transportation has increased continuously since the 70s. The undesirable accumulation of a wide variety of marine organisms (biofouling) on ship hulls can lead to significant increased costs, principally by increased fuel consumption. On the other hand, there is a great concern about the biocides commonly used in commercial antifouling (AF) protective systems due to the high concentration encountered in coastal areas and the potential damage they could cause to marine organisms. As a consequence, the development of alternative AF coatings with new natural products as biocides inhibit is a key factor. In this approach, tara tannin (TT) is being proposed as a promising solution. It is important to note that TT is obtained from the pods of the tree avoiding its cutting down. The aim of this research was, primarily, to explore the possible application of a natural and abundant product, such as the TT, in the preparation of AF coatings. So, a TT derivative was obtained and characterized to be employed as the bioactive compound in AF coatings. Previous to the immersion in natural environments, the dissolution of TT from AF coating in artificial sea water (ASW) was studied. TT was incorporated into the coating as zinc “tannate”. One of the tested coatings proved to be efficient in AF protection in natural sea water (NSW) at Mar del Plata (38°08′17″S–57°31′18″W) harbor during eight months. The addition of 2% by weight of zinc oxide to the coating extended its service life until the year.  相似文献   

6.
Transparent coatings releasing an antifouling agent (AF) can be used to reduce the marine fouling of optical lenses. A variety of water‐borne coatings based on poly(methyl methacrylate‐co‐butyl acrylate) (PMMA‐co‐PBA) were synthesized using a two‐stage miniemulsion process. During this process, the AF, SeaNine 211, was nanoencapsulated in domains small enough not to scatter light. The release rate of SeaNine 211 was studied for the polymers of different Tg, and found to be sufficient to impart AF properties. However, over time, the coatings were found to develop a whitish aspect (blushing) due to water retrodiffusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
Marine biofouling of ship hulls has significant cost, performance and environmental implications. Due to environmental concerns associated with traditional antifouling paints that mitigate fouling with the use of biocides, increasing research and development efforts have been made on fouling-release (FR) coatings. FR coatings do not actively deter settlement of marine organisms, but, instead, mitigate biofouling by minimizing the strength of adhesion. Ideally, an FR coating will allow the fouling community to be removed by simply running the vessel at relatively high speed. Traditional methods for characterizing FR properties involve immersion of relatively large samples in the ocean and waiting months for enough fouling to occur to enable reliable measurements to be made. To greatly enhance research and development relative to FR coatings, a combinatorial/high-throughput workflow was developed that includes a suite of FR laboratory assays involving marine bacteria, microalgae, and live, adult barnacles. The novel high-throughput FR measurement systems have been shown to allow for rapid screening of FR characteristics of miniaturized coating samples arranged in an array format.  相似文献   

8.
Natural rubber is a renewable resource with a potential as precursor of a very wide range of novel polymers, including polyisoprene-based surfaces with antifouling (AF) activity. In this work, new ionic and non-ionic coatings were prepared by the photocrosslinking reaction of photosensitive cis-1,4-oligoisoprenes, bearing a variable number of ammonium groups. The photochemical crosslinking was achieved using radical (via acrylate groups) or cationic (via epoxy groups) processes. Surface properties of these coatings were studied by static contact angle measurements and AFM imaging. Assessment of bioactivity demonstrated that most of the resulting coatings showed AF potential against fouling organisms: growth inhibition of marine bacteria (Pseudoalteromonas elyakovii, Shewanella putrefaciens, Cobetia marina, Polaribacter irgensii, Vibrio aestuarianus) and fungi (Halosphaeriopsis mediosetigera, Asteromyces cruciatus, Lulworthia uniseptata, Zalerion sp., Monodictys pelagica); decreased adhesion of microalgae (Navicula jeffreyi, Cylindrotheca closterium, Chlorarachnion globosum, Pleurochrysis roscoffensis, Exanthemachrysis gayraliae, Amphora coffeaeformis); inhibition of attachment and/or germination of spores of Ulva intestinalis. The best AF activity was obtained with the ionic surfaces. These new coatings prepared from precursors obtained from natural rubber are in essence active by contact. As the biocidal functions are fixed covalently to the polymer chain, detectable release of biocidal products in the marine ecosystem is prevented so that a valuable environment-friendly alternative for new AF coatings is hereby proposed.  相似文献   

9.
The undesirable accumulation of marine organisms on any surfaces immersed in seawater is termed as marine fouling. This natural phenomenon contributes a major economic concern for marine industries, e.g. for ships, vessels, oil, wind-turbine sea-platforms, pipelines, water valves and filters by limiting the performances of the devices and materials. In the last decades, several efforts have been employed in the development of efficient antifouling (AF) coatings by following the recent trend in materials science. The current review presents the research and development made in AF strategies for coatings based on two main approaches, detachment of biofoulants or preventing biofoulants attachment.  相似文献   

10.
Bioactive materials for antifouling coatings   总被引:1,自引:0,他引:1  
Marine fouling is the result of the settling and subsequent growth of marine organisms on surfaces immersed in seawater. The most successful principle in use today for the protection of ship's hulls against this unwanted growth is the release of bioactive materials from antifouling coatings.

Antifouling coatings containing a mixture of cuprous oxide and triorganotin compounds in combination with sophisticated release mechanisms are considered to be today's most efficient systems. However, ever since the first biologically active materials were introduced into antifouling coatings, a search for alternatives has been continuing. Until the mid-1970s this research mainly involved the development of biocides which could simply prolong existing drydocking intervals, i.e. prolong the period in which the ship was fouling free. During the last decade, however, environmental aspects have become a top priority in the development of new biocides for antifouling coatings.  相似文献   


11.
Marine biofouling had been a headache when engaging in marine activities. The most effective and convenient method for dealing with this problem was to apply antifouling coatings. But now a single anti-fouling system was hard to satisfy the requirement of anti-fouling simultaneously. Therefore, it was particularly important to develop novel multi-system anti-fouling technology. In the work, a novel polymer coatings with polydimethylsiloxane (PDMS) segments in the main chain and hydrolysable side chain was designed and synthesized which showed low surface energy and self-polishing performance, and then we creatively covalently immobilized the polyurethane on the surface of multi-carbon nanotubes (MWNTs) to form multisystem antifouling coating. The results showed that the polymer coating would produce hydrolysable regions in the hydrophobic PDMS segment to endure the polymer coating hydrophobic and hydrolysis properties when contacted with water. In addition, the self-polishing rate and the surface energy could be regulated by varying its copolymerization, and the addition of MWNTs could kill the microorganisms and endowed the polymer coating itself enhanced antibacterial effect. Furthermore, considering the high specific surface area and physicochemical characteristics of MWNTs, it could be combined with antifoulant Cu2O through a polar or non-polar combination as a carrier to control the release rate of Cu2O in coatings.  相似文献   

12.
Synthesis, contact angle analysis, surface properties and biofouling characteristics of novel crosslinkable terpolymers with semifluoroalkyl substituted aromatic side chains have been described. These polymers are targeted for use as coatings to prevent marine biofouling. The marine antifouling properties of these materials were evaluated by laboratory assays employing the fouling diatom Nitzschia and ubiquitous Staphylococcus aureusi. Results indicated that the experimental coatings exhibited better antibiofouling performance than that of a standard Poly(dimethyl siloxane) (PDMS) coating. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
介绍了生物降解型防污涂料用树脂的合成及生物降解型低铜、无铜防污涂料的制备进展情况,讨论了可降解嵌段共聚物树脂的性能、生物降解型防污涂料防污剂及颜填料、助剂的选择及其性能。经过实海挂板检验,初步验证此生物降解型防污涂料具有一定的防污效果,能抑制海洋污损生物的生长。  相似文献   

14.
It is generally agreed that the prevention of marine fouling can be achieved by coatings from which a controlled release of toxic molecules prevents the growth of adhered organisms (bacteria, algae, molluscs). Since the end of 1990s, antifouling paints have been made by the blending of polyacrylic resins with biocides. The aim of this study was to use new polymers in order to obtain biodegradable antifouling paints with controlled release of biocide.  相似文献   

15.
Clean hulls without poisons: Devising and testing nontoxic marine coatings   总被引:1,自引:0,他引:1  
Because this paper marks 50 years since the first Mattiello Memorial Lecture, it begins with a remembrance of the man in whose honor we meet and an appreciation of his character and his contributions to the coatings industry. The body of the paper is concerned with the coating used on a hull of a ship to prevent the accumulation of barnacles and other fouling. The most effective antifouling paint now being used contains toxins and will be forbidden by international regulations within eight years. The ideal replacement will be a nontoxic material that resists the attachment of marine life and encourages the organisms to fall off the ship. This paper describes laboratory and field work during the past 18 years on a variety of fluorinated coatings and silicone coatings with these properties and criteria for formulating successful nontoxic coatings. Silicone and fluorinated coatings frustrate fouling by different mechanisms, and thus the criteria for a successful coating are distinct in important ways. Presented at the 77th Annual Meeting of the Federation of Societies for Coatings Technology, on October 20, 1999, in Dallas, TX. Chemistry Div., Washington, D.C. 20375-5342.  相似文献   

16.
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.  相似文献   

17.
The widely recognized biofouling phenomenon has many negative consequences for artificial structures that are in contact with seawater in the form of structural defects and additional expenses for maritime companies due to cleaning and prevention processes. After having analyzed the serious environmental problems caused by an indiscriminate use of highly toxic biocides coming from organic derivatives of tin compounds and the uncontrolled emissions of volatile organic compounds (VOC) to the atmosphere, the evolving technology of antifouling paintings (further mandated by current environmental standards) aims to develop environmentally innocuous water-based coverings in which extracts of the very same marine world are used as biocide compounds. Water-based coatings are being developed that use low-toxic elements and natural biocides, where bacteria is isolated from surfaces immersed in the marine environment, creating a promising source of natural antifouling compounds. The result is a new environmentally friendly antifouling coating that is able to mitigate the problem of biofouling without affecting the surrounding medium, and which may be applied on any artificial structure in contact with seawater. An erratum to this article can be found at  相似文献   

18.
海洋防污涂料的研究进展   总被引:1,自引:1,他引:1  
海洋生物粘附在海洋设备(如船舶)上所造成的生物污损危害极大。为减少这类危害而出现了众多的海洋防污技术。其中在海洋设备上涂刷海洋防污涂料具有应用广、效果好及操作简单等优点,因而受到学术界及工业界的广泛关注。本文就海洋防污涂料的研究状况作一简要的综述,同时简要介绍我国在海洋防污涂料方面的研究与应用状况。  相似文献   

19.
Aquaculture, which is an important part of food supply, is usually carried out in cage nets made of textile materials. Fouling organisms settle on the cage nets over time, close the mesh openings, and cause unwanted weight gain. In order to prevent fouling, aquaculture nets are generally treated with antifouling paints. In this paper, warp knitted cage nets made from various raw materials were treated with three different antifouling paints. Econea was used as a biocide to prepare an eco‐friendly antifouling paint formulation, and two copper‐based commercial antifouling paints were supplied for comparison. Antifouling paint‐treated and untreated net samples were immersed in a marine ecosystem next to an aquaculture zone for 6 months. Settlement of fouling organisms on nets was observed by taking underwater photographs at periodic intervals. Following the field study, changes in the structure of the nets and antifouling performance of the paints were evaluated considering the results of underwater photographs, biomass growth, variation in mass and strength tests. Colour fastness of the antifouling paints to sea water was also measured to learn about biocide release and surface hydrophobicity. The results show that copper‐free eco‐friendly antifouling paint is just as effective against the fouling mechanism for all types of nets as copper‐based commercial antifouling paints. The novel eco‐friendly formulation has promising results, which provides an alternative for producers when considering the selection of raw materials.  相似文献   

20.
Controlling the release rate of biocides (antifouling agents) from a paint coating is a key issue for the development of multi-season antifouling marine coatings. One promising approach is the use of nanoparticles onto which biocides are adsorbed to prevent premature depletion of the biocide. Adsorption of one novel (Medetomidine) and six commercially available and widely used antifouling biocides (Chlorothalonile, Dichlofluanid, Diuron, Irgarol, Seanine, Tolylfluanid) onto oxide nanoparticles (Al2O3, CuO, MgO, SiO2, TiO2, ZnO) was investigated by HPLC and NMR in different organic solvents. Large differences in adsorption strength depending on the type of nanoparticle and solvent employed were observed. It was shown that nanoparticles coordinate preferentially with the imidazole moiety of Medetomidine. Independent of the type of particle this interaction was considerably stronger in comparison to the other biocides. However, the interaction strength was strongly dependant on the type of solvent, where the largest strongest interaction was achieved in o-xylene. In addition field tests were performed where a considerable decrease in release rate was displayed from coatings containing Medetomidine adsorbed to nanoparticles compared to coatings containing Medetomidine as single additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号