首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable waterborne polyurethane/silica hybrid dispersions were obtained by sol–gel reaction of tetraethoxysilane added to previously synthesized waterborne polyurethane nanodispersions. Two series of polyurethane/silica nanostructures with different silica contents were synthesized using pure polyurethane particles and polyurethane particles previously functionalized with (3-aminopropyl)triethoxysilane (APTES) as colloidal templates. The optimum experimental conditions for tetraethoxysilane sol–gel reaction (T = 75 °C and semi batch polymerization conditions) leading to the formation of silica/polyurethane aqueous nanodispersions were established. The presence of silica was confirmed using TGA, FTIR, 29Si NMR and TEM. TEM images showed an excellent final dispersion of the silica nanoparticles in the polymer matrix when silane functionalized polyurethane nanoparticles were used.  相似文献   

2.
3.
The hybrid sol–gel coating on Al 2024-T3 was modified by adding polyaniline, TiO2, or γ-Al2O3 nanoparticles in the formulation separately. The coating was then used as an adhesive to bond Al 2024-T3 alloys, forming a single lap joint. The bond strength of the sol–gel coating was investigated using a universal tensile test machine. The lap shear strength of the original sol–gel coating was about 1.38 MPa and it was increased up to 2.26 MPa after the modification by adding 0.05 wt% PANI microparticles in the sol–gel coating. The small increase in strength was attributed to an improvement in its adhesive flexibility because of incorporation of the long-chain organic polymer in its structure. Furthermore, the addition of different amounts of TiO2 nanoparticles in the unmodified sol–gel coating also led to an increase in shear strength compared to the undoped sol–gel coating. Typically, a sol–gel coating containing 2.0 wt% of TiO2 recorded the highest adhesive strength of about 4.0 MPa. A similar increase in strength was observed when doping γ-Al2O3 nanoparticles into the original hybrid sol–gel coating. Adding 0.5 wt% of γ-Al2O3 in the sol–gel coating increased the adhesive bonding strength up to 4.48 MPa. The fracture surface of the specimen was separately observed by SEM and Optical Microscopy in order to examine potential evidences of mechanism and nature of failure. The reason why the adhesive strength increased after the modification of the sol–gel coating is discussed in this article.  相似文献   

4.
The strengths of epoxy/aluminum joints reinforced with a zirconium-silicon based sol–gel adhesion promoter were investigated using an ADCB (Asymmetric Double Cantilever Beam) wedge test. The fracture energies and loci of failure of these joints were shown to depend upon the mixity of the normal and shear modes of stress acting at the crack. The ADCB geometry enabled the crack to propagate along the epoxy/aluminum interfaces so that the effect of surface pretreatment and the processing conditions of the adhesion promoter on adhesion strength could be directly evaluated. The dry strength of these joints depends on the thickness of the sol–gel film derived from different concentrations of the precursors. Thinner films are more fully crosslinked and thus give higher adhesion strengths than those obtained with thicker films. The differences in the wet strengths of the sol–gel reinforced joints for various surface pretreatments suggest that the sol–gel films are subject to moisture degradation with certain surface pretreatments. The loci of failure of many of these joints alternate between the sol–gel/aluminum and epoxy/sol–gel interfaces. This behavior is similar to that observed more generally in adhesively-bonded joints tested in DCB (Double Cantilever Beam) geometry. The brittle versus ductile behavior associated with the failure process reveals important information about how the sol–gel films affect the adhesion strength.  相似文献   

5.
The design and development of suitable multilayered functional coatings for delaying corrosion advance in metals and become controlled-release vehicles requires that the properties of the coatings are known. Coatings prepared by the sol–gel method provide a good approach as protective layers on metallic surfaces. This kind of coating can be prepared from pure chemical reagents at room temperature and atmospheric pressure, with compositions in a very wide range of environmentally non-aggressive precursors. Sol–gel coatings based on siloxane bonded units were prepared, starting with an organic–inorganic hybrid system. Synthesis procedures included acid-catalysed hydrolysis, sol preparation, and the subsequent gelation and drying. The alkoxide precursors used were methyl-triethoxysilane (MTMOS) and tetraethyl-orthosilicate (TEOS) in molar ratios of 10:0, 9:1, 8:2 and 7:3. After determination of the optimal synthesis parameters, the materials were characterised by solid 29Si nuclear magnetic resonance (29Si NMR), Fourier transform infrared spectroscopy (FTIR), contact angle measurement and electrochemical impedance spectroscopy (EIS) test. Finally, the materials were assayed by controlling their weight in contact with water, to determine their ability to degrade by hydrolysis. Electrochemical analysis reveals the formation of pores and water uptake during the degradation. The quantity of TEOS is one of the principal parameters that determine the kinetics of degradation. There is a correlation between the degradation process obtained for long periods and the electrochemical parameters obtained by EIS in short times. The study tries to incorporate knowledge that can be used for designing the degradation process of the functional coatings and to control their properties in short times.  相似文献   

6.
Wollastonite coatings were prepared by sol–gel on Ti substrate and their microstructures have been studied. The phase compositions and the surface morphologies of these coatings were examined by X-ray diffraction and scanning electron microscopy. Thermal behavior of dried gel was examined by differential scanning calorimetry (DSC) and thermogravimetry (TG). There are many cracks among coatings and particles with size about 200–300 nm distributing inside cracks. DSC and TG results show that the glass transformation temperature of dried gel is about 850°C. After calcined at temperature 900°C, the phase of coatings consists of wollastonite, SiO2, and CaSi2O5.  相似文献   

7.
Organic–inorganic hybrid coatings on glass substrates with superhydrophobic properties and with improved scratch resistance were obtained by means of applying a multilayer approach including multiple sol–gel processes. The coatings exhibited a water contact angle (WCA) higher than 150°. Ultraviolet (UV)-curable vinyl ester resins and vinyltriethoxysilane (VTEOS) as coupling agent were employed to increase the adhesion between substrate and the inorganic layers. The surfaces were characterized by means of dynamic contact angle and roughness measurements. Indeed, the occurrence of superhydrophobic behavior was observed. The scratch resistance of the hybrid coatings was tested to evaluate the adhesion of the coatings to the glass substrate. The proposed preparation method for scratch resistant, mechanically stable, superhydrophobic coatings is simple and can be applied on large areas of different kinds of substrates.  相似文献   

8.
Machining of steel or iron-based alloys with diamond tools leads to rapid tool failure — probably due to chemical wear. The use of monocrystalline diamond tools has, up to now, been obligatory for precision machining. Coating the diamonds with a thin but hard and chemically inert alumina film may overcome the problem. Alumina coatings were deposited by sol–gel techniques. It was shown that a very thin TiN intermediate layer, deposited by reactive sputtering, results in a good adhesion of the alumina coatings to the monocrystalline diamonds. The microstructure of the coatings was characterized by field-emission scanning electron microscopy (FE-SEM) and by transmission electron microscopy (TEM). The deposited coatings showed a nanocrystalline, dense microstructure. The hardness of the coatings was investigated by ultramicrohardness measurements (UMH).  相似文献   

9.
Conductive submicronic coatings of carbon black (CB)/silica composites have been prepared by a sol–gel process and deposited by spray-coating on glazed porcelain tiles. Stable CB dispersions with surfactant were rheologically characterized to determine the optimum CB-surfactant ratio. The composites were analyzed by Differential Thermal and Thermogravimetric Analysis and Hg-Porosimetry. Thin coatings were thermally treated in the temperature range of 300–500 °C in air atmosphere. The microstructure of the coatings was determined by scanning electron microscopy and the structure evaluated by confocal Raman spectroscopy. The electrical characterization of the samples was carried out using dc intensity–voltage curves. The coatings exhibit good adhesion, high density and homogeneous distribution of the conductive filler (CB) in the insulate matrix (silica) that protects against the thermal degradation of the CB nanoparticles during the sintering process. As consequence, the composite coatings show the lowest resistivity values for CB-based films reported in the literature, with values of ~7 × 10?5 Ωm.  相似文献   

10.
Silica-supported organic–inorganic polymer hybrids were synthesized via in situ sol–gel condensation of silica monomer in the presence of oxazoline copolymer. A stable copolymer of 2-ethyl-2-oxaoline and 2-isopropyl-2-oxazoline was prepared using methyl p-tosylate as the living polymerization initiator with molecular mass of 4200 g mol−1. Lower critical solution temperature (LCST) of this copolymer was thermally found to be at 77 °C. The copolymer was mixed with tetramethoxysilane (TMOS) in different amounts (0.039:1 to 0.158:1 weight ratios) via in situ sol–gel condensation to produce organic–inorganic hybrids including thermosensitive copolymer. Tuning of these solid-supported materials showed sharp phase transitions changes in a temperature range from 42 to 58 °C, which was confirmed using differential scanning calorimetry. Enthalpy of the phase transition was also calculated using the area above the endothermic peak. A typical concave curve was obtained for LCST-type phase diagram suggesting the dependence of phase transition temperature on the concentration of the copolymer in the hybrid. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48163.  相似文献   

11.
《Ceramics International》2015,41(6):7461-7465
Titanium dioxide is widely used in a lot of applications. The properties of TiO2 strongly depend on its phase composition. The transformation temperature between phases is influenced by a lot of factors. One of them is a type of substrate under the TiO2 film. In presented work, thin films of TiO2 were deposited by the sol–gel method on silicon, stainless steel (304 L) and Co–Cr–Mo alloy (Vitallium). The process of anatase–rutile phase transformation was investigated by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) studies of deposited coatings. The results were compared with anatase–rutile transformations temperature of TiO2 powders obtained by analogous sol–gel process. The temperature of anatase–rutile phase transformation changed in the range of 700–1000 °C and strongly depends on a kind of substrate. It was found that anatase–rutile transformation of TiO2 coating proceeded at a higher temperature than rutilization of titania powders.  相似文献   

12.
Thin alumina coatings containing zirconia or alumina nanoparticles having diameter of ~20–30 nm were deposited by the sol–gel dip-coating process on silicon wafers. The mass content of nanoparticles in the alumina coating was fixed at 15% in relation to the theoretical mass of alumina matrix resulted from the amount of the applied precursor. Atomic force microscopy (AFM) was used to image the surface topography of as-made coatings and find out the wear level after frictional tests. Tribological tests were performed with the use of a microtribometer operating in the load range of 30–100 mN. It was found that the presence of α-alumina (corundum) or zirconia nanoparticles enhances the tribological performance of alumina layers annealed at 100 °C by decreasing the average wear rate by 20% and 63% for zirconia and corundum nanoparticles, respectively. No wear was observed for samples containing both types of nanoparticles annealed at 500 °C.  相似文献   

13.
Injectable biodegradable copolymer hydrogels, which exhibit temperature-responsive sol-to-gel transition, have recently drawn much attention as promising biomedical materials such as drug delivery, cell implantation, and tissue engineering. These injectable hydrogels can be implanted in the human body with minimal surgical invasion. Temperature-responsive gelling copolymers usually possess block- and/or branched architectures and amphiphilicity with a delicate hydrophobic/hydrophilic balance. Poly(ethylene glycol) (PEG) has typically been used as hydrophilic segments due to its biocompatibility and temperature-dependent dehydration nature. Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide), poly(ε-caprolactone), and their modified copolymers have been used as hydrophobic segments based on their biodegradability and biocompatibility. Copolymers of PEG with other hydrophobic polymers such as polypeptides, polydepsipeptides have also been recently reported as injectable hydrogels. In this review, brief history and recent advances in injectable biodegradable polymer hydrogels are summarized especially focusing on the relationship between polymer architecture and their gelation properties. Moreover, the applications of these injectable polymer gels for biomedical use such as drug delivery and tissue engineering are also described.  相似文献   

14.
Inhibitor-loaded ZnAlCe layered double hydroxide (LDH) nanocontainers were prepared through the co-precipitation method. Vanadate and molybdate were used as guest inhibitors intercalating in the interlayer galleries of ZnAlCe-LDHs. The samples were characterized in terms of morphology, structure, and release behavior by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma (ICP) techniques. To investigate inhibition behavior, the LDHs particles were embedded in a hybrid sol–gel (SiO x /ZrO x ) layer on aluminum alloy 2024 measured by electrochemical impedance spectroscopy (EIS). The EIS results show that the sol–gel coating with inhibitor-loaded ZnAlCe-LDH particles exhibits high corrosion resistance due to the active inhibition by the dissolution of ZnAlCe-LDHs and inhibitor anions and the exchange behavior of LDHs. Compared with the addition of ZnAlCe-MoO4-LDHs, the coating embedded with ZnAlCe-V2O7-LDHs exhibited better anticorrosion abilities and provided effective protection after a long immersion time.  相似文献   

15.
This survey is dedicated to the synthesis of nanocomposites and organic–inorganic hybrids from sol–gel chemistry under polymer processing. Depending on the nature and reactivity of the inorganic precursors as well as the processing parameters, different types of filler and functionality can be created. These points are discussed for the in situ synthesis of silica and titanium oxide. The influence of the nature of the polymer matrix, its affinity with the initial inorganic precursors or the inorganic phase during growth is evidenced in the case of the study of polyamide/silica composites. In addition, other parameters, such as the addition of water during polymer processing, are shown to increase the rate of the conversion of the hydrolysis–condensation reactions of the inorganic precursor, and thereby affect the final morphology. Another important finding of this survey demonstrate the potential for in situ synthesis of functional nanofillers using appropriate inorganic precursors. This represents a new and original way to prepare new polymer materials with functionalities relevant to a number of applications, such as optical, mechanical reinforcement, fire retardancy and biocide properties.  相似文献   

16.
Sol–gel processing is a powerful tool to prepare antireflective (AR) coatings on optical surfaces. In this paper the different strategies to obtain antireflective properties are reviewed: porous λ/4 layers, multilayer interference-type films and index-gradient materials such as “moth eye” structures. The processing of the respective films is described and evaluated; references to respective commercial products on glass substrates are given.AR coatings may have a particularly high importance for transparent ceramics as their index of refraction is significantly higher than that of common glass types. Reflective losses therefore are higher which is especially unpleasant for materials with a yet improvable intrinsic transparency.Recent studies indicate that specific porous λ/4 layers may exhibit pronounced anti-soiling features. Laboratory experiments as well as outdoor exposure tests were used to demonstrate the dust-repellant properties.  相似文献   

17.
Non-fluorinated hydrophobic silica surfaces were generated on soda lime glass (SLG) substrates using hexamethyldisilazane (HMDS) as a surface modifying agent. Silica coatings were fabricated by dip coating of a sol derived from base catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). Two methodologies were adopted to generate the hydrophobic surface; one where the hydrophilic silica coated surface was treated by immersion into different concentrations of alcoholic solutions of HMDS varying from 2.5 wt% to 15 wt%. In the other method, HMDS was directly added to a mixture of TEOS, water, ethanol, and ammonium hydroxide and coatings were deposited using this sol by dip coating and spray coating. Water contact angles (WCA) were measured to study the effect of HMDS treatment times and concentrations on hydrophobicity in the first case, and in the second case, WCA were measured for dip and spray coated samples. UV–visible transmission, scratch resistance, and thermal stability of the coatings were determined. The WCA increased from 66 ± 2° to 125 ± 4° after the treatment of the silica coatings with HMDS. In case of coatings generated from direct addition of HMDS to silica sol, WCA varied from 145 ± 2° to 166 ± 4° for dip and spray coated surfaces respectively. Surface morphology was studied to explain the difference in hydrophobicity of coatings generated using the two methods.  相似文献   

18.
Cyclic oxidation life enhancement of sol–gel thermal barrier coatings is obtained via the reinforcement of the controlled micro-crack network that forms during the initial sintering of the deposit. Two different sol–gel methods are used to fill in the process-induced cracks, namely dip-coating and spray-coating. Filling parameters, for instance the number of passes or the viscosity of the sol are adjusted, using various techniques such as profilometry and microstructural analysis, to optimise crack filling. Cyclic oxidation tests are implemented at both 1100 °C and 1150 °C to investigate the efficiency of the various reinforcement procedures developed and address the influence of the specific microstructure on the oxidation behaviour.  相似文献   

19.
An antibacterial coating composed of silver nanoparticles and waterborne polyurethane was synthesized for use on synthetic leather. In this study, silver nanoparticles were prepared and used as nanofiller to impart antibacterial property. Silver nanoparticles were synthesized by using poly(vinyl pyrrolidone) as dispersant and sodium borohydride (NaBH4) as reducing agent. Silver nanoparticles were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The optimum dispersant was selected according to the zeta potential of dispersions. Waterborne polyurethane was synthesized by using isophorone diisocyanate, 2-bis(hydroxymethyl)propionic acid, triethylamine, and polytetramethylene ether glycol. Waterborne polyurethane–silver antibacterial coating was obtained by ultrasonic dispersion, and then cast on the surface of synthetic leather. The antibacterial property and coating adhesion were investigated. The results showed silver nanoparticles homogeneously dispersed in waterborne polyurethane and adhesion reaching grade 4. Antibacterial testing showed bacterial reduction of 99.99% for Escherichia coli and 87.5% for Staphylococcus aureus.  相似文献   

20.
Development of the solid surfaces with water-repellent and self-cleaning ability has attracted much research interest in recent years. In the present research work, we have prepared water repellent silica coatings on glass at room temperature (~27 °C) by sol gel process and surface silylation technique. Coating sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS), methanol (MeOH) and water (H2O) constant at 1:12.36:4.25, respectively, with 0.01 M NH4F. The dip coated silica films were surface silylated using two different silylating agents namely hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDZ). The HMDSO and HMDZ in hexane solvent were varied from 0 to 1 vol.% and silylation period was varied from 1 to 3 h. The HMDSO and HMDZ modified films showed dense and porous surface morphology, respectively. The HMDSO modified silica films showed static water contact angle of 122° whereas HMDZ modified films showed 165°. The HMDZ modified films displayed the extreme water repellency comparing with that of lotus leaves. The silica films were characterized by surface profilometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared microscopy, thermal and chemical aging tests, optical transmission and static water contact angle measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号