首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La0.7Mg0.3Ni2.55-xCo0.45Cux(x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and rapid quenching. Ni in the alloy was partially substituted by Cu in order to improve the cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy. The effects of substituting Ni with Cu on the microstructures and cycle stability of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM show that the substitution of Cu for Ni is favourable for the formation of an amorphous in the as-quenched alloy, and this leads to an obvious refinement of the as-quenched alloy grains and a growth of the lattice constants and cell volumes of the as-cast and quenched alloys. The results obtained by the electrochemical measurement indicate that the cycle stability of the alloys significantly rises with the incremental variety of Cu content. When Cu content changes from 0 to 0.4, the cycle lives of the as-cast and quenched (30 m/s) alloys are enhanced from 72 to 88 cycles and from 100 to 121 cycles, respectively.  相似文献   

2.
Nanocrystalline Mg2Ni-type alloys with nominal compositions of Mg20Ni10–xCux(x=0,1,2,3,4,mass fraction,%) were synthesized by rapid quenching technique.The microstructures of the as-cast and quenched alloys were characterized by XRD,SEM and HRTEM.The electrochemical hydrogen storage performances were tested by an automatic galvanostatic system.The hydriding and dehydriding kinetics of the alloys were measured using an automatically controlled Sieverts apparatus.The results show that all the as-quenched alloys hold the typical nanocrystalline structure and the rapid quenching does not change the major phase Mg2Ni.The rapid quenching significantly improves the electrochemical hydrogen storage capacity of the alloys,whereas it slightly impairs the cycling stability of the alloys.Additionally,the hydrogen absorption and desorption capacities of the alloys significantly increase with rising quenching rate.  相似文献   

3.
In order to investigate the influences of the stoichiometric ratio ofB/A (A: gross A-site elements, B: gross B-site elements) and the substitution of Co for Ni on the structures and electrochemical performances of the AB3.5-4.1-type electrode alloys, the La-Mg-Ni-Co system La0.75Mg0.25Ni3.5Mx (M=Ni, Co; x= 0, 0.2, 0.4, 0.6) alloys were prepared by induction melting in a helium atmosphere. The structures and electrochemical performances of the alloys were systemically measured. The results show that the structures and electrochemical performances of the alloys are closely relevant to the B/A ratio. All the alloys exhibit a multiphase structure, including two major phases, (La, Mg)2Ni7 and LaNis, and a residual phase LaNi2, and with rising ratio B/A, the (La,Mg)2Ni7 phase decreases and the LaNi5 phase increases significantly. When ratio B/A-3.7, the alloys obtain the maximum discharge capacities. The high rate discharge(HRD) capability of the alloy (M=Ni) monotonously rises with growing B/A ratio, but that of the alloy (M=Co) first mounts up then declines. The cycle stability of the alloy (M-Co) monotonously increases with rising B/A ratio, but it first decreases slightly then increases for the alloy (M=Ni). The discharge potential of the alloy (M=Ni) declines with increasing B/A ratio (x〉0.2), but for the alloy (M-Co), the result is contrary. The substitution of Co for Ni significantly ameliorates the electrochemical performances. For a fixed ratio B/A=3.7, the Co substitution enhances the discharge capacity from 365.7 to 401.8 mA.h/g, the capacity retention ratio (S100) after 100 charging-discharging cycles from 50.32% to 53.26% and the HRD from 88.65% to 90.69%.  相似文献   

4.
The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.  相似文献   

5.
In order to improve the electrochemical cycle stability of the RE–Mg–Ni-based A2B7-type electrode alloys, a small amount of Si has been added into the alloys.The casting and annealing technologies were adopted to fabricate the La0.8Mg0.2Ni3.3Co0.2Six(x = 0–0.2) electrode alloys. The impacts of the addition of Si and annealing treatment on the structures and electrochemical performances of the alloys were investigated systematically. The results obtained by XRD and SEM show that all the as-cast and annealed alloys are of a multiphase structure, involving two main phases(La, Mg)2Ni7and La Ni5 as well as a residual phase La Ni3. Both adding Si and the annealing treatment lead to an evident change in the phase abundance and cell parameters of(La, Mg)2Ni7and La Ni5 major phases of the alloy without altering its main phase component. Moreover, the annealing treatment has the composition of the alloy distributed more homogeneously overall and simultaneously causes the grain of the alloy to be coarsened obviously. The electrochemical measurements indicate that adding Si and the annealing treatment give a significant rise to the influence on the electrochemical performances of the alloys. In brief, the cycle stability of the as-cast and annealed alloys evidently increases with the rising of Si content, while their discharge capacities obviously decrease under the same circumstances. Furthermore, the electrochemical kineticproperties of the electrode alloys, including the high rate discharge ability, the limiting current density(IL), hydrogen diffusion coefficient(D), and the charge-transfer resistance, first augment and then decline with the rising of Si content. Similarly, it is found that the above-mentioned electrochemical properties first mount up and then go down with the rising annealing temperature.  相似文献   

6.
The double-roller rapid quenching technology was successfully used to prepare La-Mg-Ni system hydrogen storage alloys. The effects of magnesium content and heat-treatment process on the alloys properties were studied. When the alloy with 1.09%(mass fraction) Mg is heat treated at 900℃ for 4 h, its discharge capacity is more than 380 mA.h/g at 0.2C, and the cyclic life is beyond 500 counts at 2C. By XRD and PCI analyzing, the results show that the alloys are composed of LaNis and LaNi3 phase. The hydrogen absorption/desorption pressure of the alloy increases, so does the slope of plateau, and the plateau becomes broad first and narrow again as Mg content increases. This method is simple to be suitable for production on a large scale.  相似文献   

7.
In order to improve the electrochemical hydrogen storage performances of the Mg2Ni-type alloys, Ni in the alloy was partially substituted by element Co. The nanocrystalline and amorphous Mg20Ni10-xCox (x=0, 1, 2, 3, 4) alloys were prepared by melt-spinning technology. The structures of the as-cast and spun alloys were studied by XRD, SEM and HRTEM. The electrochemical hydrogen storage characteristics of the alloys were measured. The results show that the substitution of Co for Ni leads to the formation of secondary phase MgCo2 without altering the major phase of Mg2Ni. No amorphous phase is detected in the as-spun alloy (x=0), whereas the as-spun alloy (x=4) holds a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni significantly increases the glass forming ability of the Mg2Ni-type alloy. The substitution of Co for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, including the discharge capacity and the cycle stability, for which the increased glass forming ability by Co substitution is mainly responsible  相似文献   

8.
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg Ni system A2B7-type electrode alloys,the partial substitution ofM (M =Zr,Pr) for La was performed.The melt spinning technology was used to fabricate the La0.75-xMxMg0.25Ni3.2Co0.2Al0.1 (M =Zr,Pr; x =0,0.1) electrode alloys.The influences of the melt spinning and substituting La with M (M =Zr,Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated.The analysis of XRD,SEM,and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La,Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2.The as-spun (M =Pr) alloy displays an entire nanocrystalline structure,while an amorphous-like structure is detected in the as-spun (M =Zr) alloy,implying that the substitution of Zr for La facilitates the amorphous formation.The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however,the Zr substitution brings on an adverse impact.Meanwhile,the M (M =Zr,Pr) substitution significantly enhances its cycle stability.The melt spinning exerts an evident effect on the electrochemical performances of the alloys,whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate,whereas their cycle stabilities monotonously augment as the spinning rate increases.  相似文献   

9.
Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.  相似文献   

10.
La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.  相似文献   

11.
The nonstoichiometric La-rich mischmetal (designated by Ml)-based hydrogen storage alloy with a composition of Ml(Ni0.64Co0.20Mn0.12Al0.04)4.76 was prepared by arc melting and annealed at 1173 K for 10 h to investigate the effect of annealing treatment on the microstructure and electrochemical characteristics of the alloy. X-ray diffraction analysis showed that annealing can cause a release of the crystal lattice strain and an increase in amounts of the La2Niγ-type second phase inMl(Ni0.64Co0.20Mn0.12Al0.04)4.76 alloy. Scanning electron microscopy and electron probe microanalysis examinations indicated that annealing leads to disappearance of the dendrite structure in the as-cast alloy, growth of crystal grain, and decrease of composition segregation. The annealing at 1173 K for 10 h flattened and extended the potential plateau and increased the maximum discharge capacity to 328 mA-h/g from 310 mA-h/g and the cycling life. The mechanism of the improvement in electrochemical characteristics was discussed based on the alloy microstructure change induced by annealing.  相似文献   

12.
A series of hydrogen storage Co-free AB3-type alloys were directly synthesized with vacuum mid-frequency melting method,within which Ni of La0.7Mg0.3Ni3 alloy was substituted by Fe,B and(FeB) alloy,respectively.Alloys were characterized by XRD,EDS and SEM to investigate the effects of B and Fe substitution for Ni on material structure.The content of LaMg2Ni9 phase within La0.7Mg0.3Ni3 alloy reaches 37.9% and that of La0.7Mg0.3Ni2.9(FeB)0.1 alloys reduces to 23.58%.Among all samples,ground particles with different shapes correspond to different phases.The major substitution occurs in LaMg2Ni9 phase.Electrochemical tests indicate that substituted alloys have different electrochemical performance,which is affected by phase structures of alloy.The discharge capacity of La0.7Mg0.3Ni3 alloy reaches 337.3 mA·h/g,but La0.7Mg0.3Ni2.9(FeB)0.1 alloy gets better high rate discharge(HRD) performance at the discharge rate of 500 mA/g with a high HRD value of 73.19%.  相似文献   

13.
X-ray diffraction and DSC were used to investigate the crystallization behavior of amorphous Al90Ni5Ce5 alloys at different quenching temperatures.All the amorphous Al90Ni5Ce5 alloys quenched at different temperatures crystallize by two stages.The first stage corresponds to FCC Al phase precipitating from the amorphous matrix.The crystallization onset temperature increases with increasing quenching temperature.The quenching temperature also influences the isothermal behaviors.At low quenching temperatures,the FCC Al precipitation is only through grain growth.At high quenching temperatures,the FCC Al precipitation is through growth of quenched-in Al unclei and nucleation and growth of new crystallites.The reason that the crystallization onset temperature varies with quenching temperature is likely as that the quenched-in Al nuclei decreases with increasing temperature.  相似文献   

14.
AB5 hydrogen storage alloys La0.54Ce0.28Pr0.18Ni4-xCo0.6Mno35Alx (x=0.1, 0.2, 0.3) were prepared by arc melting method under an Ar atmosphere. The results show that the contents of Ni and Al have obvious influences on the microstructure and electrochemical properties of the alloys. Both the lattice parameters and the cell volumes decrease with decreasing x value. Moreover, the discharge capacity at different temperatures, the high rate discharge property, and the cycling life of the alloy electrode are also in close relationship with the x value. When x value increases from 0.1 to 0.3, the discharge capacities with a discharge current density of 60 mA/g slightly decreases at 25℃, but evidently deteriorates at -40℃, the high-rate property gravely decreases, and the cycle life of the alloy electrode is improved in some extent. Therefore, it is meaningful to control Al content for the AB5 hydrogen storage alloys used in Ni/MH batteries.  相似文献   

15.
The effects of low-Co AB5 type hydrogen storage alloys prepared by quenching and annealing on the performances of MH-Ni batteries were investigated, and the characteristics of the low-Co AB5 type hydrogen storage alloys were compared with those of the high-Co AB5 type hydrogen storage alloy as well. The results showed that the faster the cooling of the low-Co hydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and the longer cycle life of the battery are, but the electrochemical discharge capacity and high-rate discharge ability are reduced. The high-rate discharge ability and charge retention of MH-Ni batteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to those for the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, but a little inferior in the cycle life.  相似文献   

16.
In order to evaluate the effect of stoichiometric ratio upon electrochemical properties of AB5-type hydrogen storage alloys, a series of alloys Mm0.8La0.2(Ni4.0Mn0.2Al0.3Co0.37Fe0.13)a (a=0.90-1.08) were prepared and the electrochemical properties were tested. Mm0.8La0.2Ni4.0Mn0.2Al0.3Co0.37Fe0.13 was one of some new low cobalt AB5-type hydrogen storage alloys which had been researched to have good electrochemical properties. The results show that the stoichiometric ratio has great effects on the electrochemical properties of alloys. And the effects were investigated in detail. When stoichiometric ratio x〈5.3, the activation performances of alloys are all good. But when stoichiometric ratio x〉5.3, the activation performances are decreased evidently. When stoichiometric ratio x〈5.3, the discharge capacities of alloys are linearly increased with the increase of stoichiometric rati0. When stoichiometric ratio x〉5.3, the discharge capacities of hydrogen storage alloys decrease linearly rapidly by the raise of stoichiometric rati0. Overstoichiometry is good to the cycle lives of alloys. When stoichiometric ratio is between 4.8 and 5.4, voltage platforms of alloys tend to increase linearly with the increasing ofx. When x〉5.4, the increase of stoichiometric ratio leads to the decrease of voltage platform of alloys.  相似文献   

17.
LaMgNi_(4-x)Co_x(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis show that LaMgNi4 phase and LaNi5 phase are obtained. The lattice parameters of the two phases increase first and then decrease with Co content increasing.The electrochemical properties of the alloy electrodes were measured by means of simulated battery tests. Results show that the addition of Co does not change the discharge voltage plateau of the alloy electrodes. However, the maximum discharge capacity increases from 319.9 mAh·g~(-1)(x = 0)to 347.5 mAh·g~(-1)(x = 0.4) and then decreases to331.7 mAh·g~(-1)(x = 0.8). The effects of Co content on electrochemical kinetics of the alloy electrodes were also performed. The high rate dischargeability(HRD) first increases and then decreases with Co content increasing and reaches the maximum value(95.0 %) when x = 0.4. Test results of the electrochemical impedance spectra(EIS),potentiodynamic polarization curves and constant potential step measurements of the alloy electrodes all demonstrate that when Co content is 0.4 at%, the alloy exhibits the best comprehensive electrochemical properties.  相似文献   

18.
The as-cast multi-element Mg–4Gd–1Y–1Zn–0.5Ca–1Zr alloy with low rare earth additions was prepared, and the solution treatment was applied at different temperatures. The microstructural evolution of the alloy was characterized by optical microscopy and scanning electron microscopy, and corrosion properties of the alloy in 3.5% NaCl solution were evaluated by immersion and electrochemical tests. The results indicate that the as-cast alloy is composed of the a-Mg matrix,lamellar long-period stacking-ordered(LPSO) structure and eutectic phase. The LPSO structure exists with more volume fraction in the alloy solution-treated at 440 °C, but disappears with the increase in the solution temperature. For all the solution-treated alloys, the precipitated phases are detected. The corrosion rates of the alloys decrease first and then increase slightly with the increase in the solution temperature, and the corrosion resistance of the solution-treated alloys is more than four times as good as that of the as-cast alloy. In addition, the alloy solution-treated at 480 °C for 6 h shows the best corrosion property.  相似文献   

19.
The effect of yttrium and mischmetal(MMs)on the as-cast and solid solution treated structures of Mg-Al alloys with different Al-contents was investigated.The results show that the MMs in Mg-Al alloy existed in rod Al4(Ce,La)compound while Y in Mg-Al alloy in polygonal Al2Y compound.The amount of Mg17Al12 in Mg-Al alloy is decreased with increasing Y or MMs addition,and Mg17 Al12 intermetallic compound is changed from continuous network to discontinuous one.The Al4(Ce,La)and Al2Y compounds are not dissolved into Mg-Al alloy matrix during solid solution treatment so that their high heat stability can be exhibited.The experiment of mechanical properties indicate that elongation and impact toughness of the Mg-Al-Y alloy with polygonal Al2Y compound are higher than those of Mg-Al-MMs alloy with rod A4(Ce,La) compound.  相似文献   

20.
Mg-5.6Li-3.37Al-1.68Zn-1.14Ce alloy was prepared using vacuum induction melting furnace. The microstructure and phases compostion of as-cast and as-extruded alloys were investigated by optical microscopy, energy dispersive X-ray spectroscopy, scanning electron mocroscopy and X-ray diffraction. The mechanical properties of these alloys were measured with tensile tester. The results indicate that the as-cast alloy is composed of a(Mg) phase and rod-like Al2Ce compound. Al2Ce has the refining effect on the microstructure of alloy. During the extrusion at 523 K, dynamic recrystallization happens in the alloy. The dynamic recrystallization refines the grain size of alloy obviously. The phases are refined clearly after extrusion deformation, and the strength and ductility of the alloy are increased accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号