首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric hot incremental forming of Ti-6Al-4V titanium sheet   总被引:2,自引:2,他引:0  
Electric hot incremental forming of metal sheet is a new technique that is feasible and easy to control to form hard-to-form sheet metals. In the present study, Ti-6Al-4V titanium sheet was studied because it was wildly used in the aeronautics and astronautics industries. Although Ti-6Al-4V titanium can be well-formed in high temperature, the surface quality is a problem. In order to enhance the surface quality, it is very important to select the proper lubricant. At the same time, because Ti-6Al-4V titanium has a lively chemical property, it is very important to choose a processing temperature range in order to acquire excellent plastic property and to prevent oxidation. Various lubricants were selected in processing to compare the effect, and some workpieces were formed at different temperatures to find the best forming temperature. The results show that using the lubricant film of nickel matrix with MoS2 self-lubricating material, Ti-6Al-4V titanium workpiece was formed with high surface quality, and the optimum thickness of composite coating is 20 μm for Ti-6Al-4V titanium sheet of 1.0-mm thickness. In fact, the lubricant film also does help to prevent oxidation of Ti-6Al-4V titanium sheet. The appropriate temperature range of Ti-6Al-4V forming with slightly oxidized is 500–600°C in processing, and the maximum draw angle formed in this range was 72°.  相似文献   

2.
Split-Hopkinson pressure bar (SHPB) was adopted to study the dynamic response of a specifically designed Hot isotropically processed (HIP) Casting Titanium alloy (Ti-6Al-4V). The strain-stress curves were obtained in a range of strain rate (10?3~2.6×103/s) to study the constitutive relationships and the Johnson-Cook model is developed to describe this dynamic constitutive law. It can be found that the static microstructure of this specific HIP casting Ti-6Al-4V is lamellar structure. When the loading increases (strain rate higher than 103/s), this lamellar structure changes to basket weave structure, which further changes the mechanical strength and plasticity.  相似文献   

3.
Superplastic forming of titanium alloys is used for producing structural components, since it is an effective way to manufacture complex-shaped parts in a one-step operation. An optimized sheet-forming process has been designed incorporating a non-isothermal heating system to establish a fast forming process. This work sought to expand the advantages of the technology to the forming of Ti-6Al-4V alloy at 800 °C and shorter cycle time. The minimum thicknesses area was found at the outward corners, showing a maximum percent thinning of 54 %. In addition to stress variations, the cracks resulting from hot drawing and the oxidation on the sheet surface are the other reasons leading to thickness reduction. From the oxidization behavior of Ti-6Al-4V alloy, it was revealed that the decrease in forming temperature from 900 to 800 °C significantly reduced the formation rate of oxide film on the sheet surface. The study also showed that the main microstructure evolution of Ti-6Al-4V alloy under these conditions was recrystallization.  相似文献   

4.
Pulse current-assisted hot-forming (PCAHF) of light metal alloy is developed due to lower energy consumption and higher efficiency. In this process, the metal sheet is designed in series in a pulse current circuit and heated directly by the pulse current. In addition, the ceramics mold is employed to avoid the heating current leaking. The Ti-6Al-4 V sheets are employed to improve the temperature distribution of the heated light metal alloy sheet. The effects of effective current density on the temperature and the rate of increase in temperature are studied by the pulse current heating experiment, and the effect of duty ratio on the forming property is studied by the forming experiments. Moreover, some light metal samples with different shapes are formed by the method of PCAHF. As the results, the hot forming with the merits of high-efficiency and low-energy consumption becomes possible.  相似文献   

5.
Electric hot incremental forming is feasible and easy to control to form hard-to-form sheet metals, but the limited accuracy is a major deficiency. In order to find methods to improve precision, single-point electric hot incremental of Ti–6Al–4V titanium sheet was numerically simulated using MSC.Marc, and experimental investigations were also carried out in this paper. Through numerical analysis, distributing laws of temperature, thermal strain, stress, and equivalent strain were revealed, and impacts of cold contract and thermal strain on forming were also revealed. Analysis showed that electric hot incremental forming is a complex pyroplastic deformation, and there is a large internal stress in single-point electric hot incremental forming. The incremental sheet forming region can be divided into three parts: bending deformation at the beginning, shear forming at middle, and reverse bending at last; it is important to enhance the accuracy of the bending part and the reverse bending part, and adequate support must be provided in the beginning to reduce the bending part. In order to form a workpiece with small angle, two-point incremental forming was adopted at first because the gravity of clamp can reduce the reverse bending, then single-point electric hot incremental forming was adopted to enhance the accuracy and reduce internal stress of workpiece.  相似文献   

6.
热矫形是消除高弹性板金工件回弹畸变的工艺。本文论证了热矫形的定形原理,即材料软化与短时应力松弛综合效应。据此建立了弯曲回弹热矫形的理论规律。定量反映了材料性能、几何尺寸、温度和时间等主要因素对矫形过程的影响。理论值与实验结果吻合。可以将其用来估计热矫形工艺参数。此外还给出了Ti-6Al-4V和Ti-2Al-1.5Mn在规范成形及矫形温度下的热力学特性与回弹矫形实验曲线。  相似文献   

7.
将铸态Ti-6Al-4V钛合金经过β相区热处理水淬之后获得马氏体组织,经过两步多向等温锻造之后获得了平均晶粒尺寸为1.5 μm的均匀等轴细晶组织,其室温拉伸屈服强度为906 MPa,抗拉强度为954 MPa,伸长率为16.7%,相比铸态Ti-6Al-4V钛合金,其室温力学性能得到了极大提升。研究表明,获得马氏体组织对钛合金晶粒细化有着巨大促进作用。第一步等温锻造之后的钛合金坯料组织并不均匀,存在变形区和“变形死区”,在变形区域内,心部位置应变量最大,组织细化最为明显,从心部到两端应变量逐渐减小,片层组织变形量相应减小;经过90°换向后的第二步等温锻造之后,钛合金坯料组织内的片层组织基本全部细化,形成了均匀的等轴晶组织,从心部到两端,随着应变量的减小,晶粒取向变化相应减小。  相似文献   

8.

Forging processing parameters have an important impact on the fatigue resistance of metal in the process of plastic forming, which directly threatens the safety and reliability of the metal’s service. Taking Ti-6Al-4V alloy as the research object, this study investigates the effect of processing parameters, including forging temperature and deformation degree on the Young’s modulus, ultimate tensile strength, and reduction of fracture area on the basis of the mechanical property testing of Ti-6Al-4V alloy forgings and obtains the regression equations at the same time. Combined with the existing stress fatigue life prediction formula, the fatigue life prediction based on forging process parameters is realized. Results show that forging temperature and deformation degree have a significant effect on fatigue life. The forging processing parameters of Ti-6Al-4V alloy with optimum fatigue life are as follows: 985 °C–990 °C forging temperature and 46%–50% deformation degree.

  相似文献   

9.
屈聪  孟智娟  赵亮  陈耀  马立东 《中国机械工程》2022,33(16):1991-1999
Ti-6Al-4V钛合金材料在弯曲成形过程中会产生较大的回弹,其弹性模量对回弹影响较大,但以往研究均未考虑材料塑性应变变化过程中弹性模量的变化。以Ti-6Al-4V钛合金为对象,进行了材料的单轴拉伸实验和循环加载-卸载实验,以揭示材料各向异性参数及材料弹性模量随塑性应变变化的规律,在此基础上建立了Ti-6Al-4V钛合金变弹性模量数学模型。基于YLD2000-2D屈服准则及变弹性模量和Mises各向同性两种不同的本构模型,对常温下Ti-6Al-4V钛合金板材的五点弯曲过程进行了数值模拟,为了验证数值模拟结果,进行了常温下Ti-6Al-4V板材的五点弯曲实验,结果显示,前者显著提高了Ti-6Al-4V钛合金弯曲回弹预测精度,预测精度相比后者提高了31.18%。  相似文献   

10.
难成形板料局部自阻电辅助加热数控渐近成形是一种新技术,由于该技术涉及高温、电流和塑性变形等因素,摩擦机理复杂,因此选择正确的润滑方式对提高加工件的表面质量至关重要。笔者首先对渐近成形的摩擦机理进行了分析,提出摩擦分为3个区域,黏着摩擦、边界摩擦和流体润滑。然后又对电辅助加热渐近成形的摩擦机理进行分析,指出摩擦主要由黏着摩擦和边界摩擦组成,并提出了摩擦力计算公式。为了提高电辅助加热渐进成形加工件的表面质量,关键是增加润滑剂与板料之间的结合力。通过选用不同润滑剂进行实验,对比加工件表面质量,发现用电沉积制备的铜基二硫化钼复合材料具有良好的自润滑性能,加工的TC4钛合金钣金件表面质量良好。  相似文献   

11.
Incremental sheet forming (ISF) consists of deforming the sheet, through a spherical punch, punctually and progressively until it reaches the desired geometry. Compared to the conventional process, the ISF can achieve much higher levels of formability. But the stresses and residual strains are often pushed to the limit on the path, producing a piece with brittle behavior, which is not desirable for applications in engineering. To work around this inconvenience, one solution would be to perform the conformation at high temperatures, a process known in engineering as hot forming. This study aims to evaluate the behavior of the state of stresses and strains in the hot incremental sheet forming of 1050 aluminum alloy, with and without pre-heating, using the finite element method. This behavior has been studied by numerical simulation, using the software RADIOSS, which has a suitable formulation for inserting the effects of temperature and strain rate in the material. The results show a decline in the forces for electric hot incremental sheet forming preheated (EHISFP) compared to the electric hot incremental sheet forming (EHISF). Moreover, for these same cases, there was a gain in relation to the geometric precision on average more than 4%.  相似文献   

12.
采用选区激光熔化(SLM)技术制备Ti-6Al-4V合金,经真空退火热处理和热等静压处理后,研究了合金准静态和高应变速率(500~3000s^-1)下的力学性能;对双线性材料模型进行标定,将所得到的材料参数应用于霍普金森压缩试验的有限元模拟中,并将模拟结果与试验结果进行对比。结果表明:经真空退火和热等静压处理后,SLM成形合金的组织为α相和β相,呈网篮组织形貌;与准静态条件下的相比,在高应变速率下SLM成形合金的断后伸长率得到明显提高;模拟得到的归一化真应力-真应变曲线与试验得到的相吻合,平均相对误差为2.5%,其材料参数可用于后续的瞬态冲击仿真分析中。  相似文献   

13.
超高频脉冲GTAW工艺特性分析   总被引:3,自引:0,他引:3  
基于5 mm厚的Ti-6Al-4V钛合金平板,分别采用常规钨极氩弧焊(Conventional gas tungsten arc welding,C-GTAW)和超高频脉冲钨极氩弧焊(Ultra high frequency pulsed GTAW,UHFP-GTAW)工艺,选用相同平均电流(60 A)进行焊接,同时利用FLUKE Ti400红外热像仪对熔池中心温度进行实时监测,分别对电弧定点燃烧时、以50 mm/min焊速移动时采集的熔池中心温度进行分析。由测量结果可知,与相同条件下C-GTAW相比,UHFP-GTAW作用下的熔池中心温度最大值增加了10~40 K,表明该工艺具有更高的能量密度。分析1.5 mm钛合金对接工艺试验的组织性能测试结果发现,焊缝区细小均匀的针状α'马氏体形成的网篮组织含量增加,热影响区组织α'相呈现短且小的针状且排列更为致密,可改善接头的拉伸力学性能、疲劳性能。UHFP-GTAW焊缝的伸长率最小增幅为30%,断面收缩率最小增幅为50%,疲劳寿命至少增加2倍。  相似文献   

14.
选用Ti-22Al-25Nb预合金粉末为实验初始原料,采用放电等离子烧结工艺(SPS)制备组织致密的粉末冶金Ti-22Al-25Nb合金。采用MSC.Marc有限元软件对SPS过程中粉末的致密化过程进行了数值模拟,分析了烧结温度、保温时间和烧结压力对粉末致密化过程的影响,揭示了粉末相对密度随烧结温度、保温时间和烧结压力的变化规律。根据模拟结果,在950~1 200 ℃温度区间、50 MPa烧结压力和10~20 min保温时间的条件下,完成系列SPS烧结实验,制备获得Ti-22Al-25Nb合金。系统分析了50 MPa/10 min烧结条件下温度对Ti-22Al-25Nb合金的相对密度、显微组织和力学性能的影响,揭示了烧结合金的断裂机制。实验结果表明烧结合金在950 ℃/50 MPa/10 min条件下具有最优的综合力学性能,延伸率和屈服强度分别达到8.14%和691.04 MPa。  相似文献   

15.
In this paper the influence of rapidly solidified structures on the wear behavior of Ti-6Al-4V laser alloyed with TiC is studied by using an unlubricated sliding wear test. The results show that laser surface alloying with TiC can significantly increase wear resistance of Ti-6Al-4V. The wear of Ti-6Al-4V is characterized by adhesive de-lamination and melting showing a severe wear mechanism, while after alloying with TiC, it is changed into a mild wear mechanism characterized by a smooth, worn surface. This is attributed to directional fast-growing dendrites capped by a TiN/TiC film with high hardness and framed α marlensites obtained in rapid solidification.  相似文献   

16.
对原位反应制备的(TiB,TiC)/Ti-6Al-4V复合材料进行热氢处理,研究了不同状态下复合材料的显微组织和力学性能。结果表明:置氢处理降低了复合材料的相变温度,提高了β相的含量;氢含量为0和0.15%的复合材料热锻后获得α和β相,氢含量为0.6%的复合材料获得α′′马氏体和β相;除氢处理提高了复合材料在室温和400℃下的屈服强度和抗拉强度。  相似文献   

17.
分别在800℃、825℃、850℃焊接温度、30 m in保温时间,3 MPa焊接压力下,进行Ti-6A l-4V钛合金板与304L不锈钢网的真空扩散焊接。对接头组织结构与化学元素扩散进行了扫描电镜与能谱分析,并测试了接头的剪切强度。结果表明:不添加中间过渡层金属,可以成功地实现钛合金板与不锈钢网的扩散焊接,并使接头的剪切强度达到90 MPa以上。不锈钢网中的Fe、N、iCr扩散并固溶到钛合金中,稳定了β相,使钛合金在一定深度上,其组织由原来的α+β双相结构转变为单相的β相。不锈钢中的Cr,由于钛合金中Ti的扩散进入,而在界面发生了上坡扩散现象。这种Cr在不锈钢一定深度内的富集,形成窄长的富Cr区域,冷却后转变为硬脆的σ相。但在焊接接头中没有发现明显其它的金属间化合物或氧化物相的生成,使得接头的机械性能得到了很好的保证。  相似文献   

18.
Ti-6Al-4V is widely utilized to manufacture airframe component structures with curvature, because of its excellent strength to weight ratio, outstanding resistance to corrosion, and inherent thermal and electrical compatibility with carbon fiber composite. Hot stretch bending (HSB) is an effective technology to manufacture these kinds of structures. When comparing the thin-walled extrusion with the thick-walled one, however, it is more difficult to form. The reason is that the local temperature of extrusion decreases more because of the heat transfer between extrusion and die. In this study, the material properties of Ti-6Al-4V were measured experimentally, such as the tensile property within the temperatures from 873 to 1023 K and the strain rates from 0.0005 to 0.005 s?1, the stress relaxation behavior in a wide range of temperatures (773–973 K) and prestrains (0.7–10%), as well as the heat transfer rule between Ti-6Al-4V (extrusion material) and asbestos cement (die material) under different pressures (8–25 MPa). The heat transfer coefficients (HTCs) were determined by an inverse analysis procedure, which was based on the comparison between measured and calculated temperature. Then, the coupled thermomechanical finite element (FE) model considering the effect of heat transfer was established. The influence of preheating temperature of die, initial temperature of extrusion, and dwell time on spring-back was researched based on orthogonal array testing strategy (OATS). The optimized parameters were verified by process test. It was showed that the established FE model could be used to predict spring-back within a relative deviation of 8.05%.  相似文献   

19.
The friction factor of Ti-6Al-4V titanium alloy under hot forging situation was determined by the combined approach of ring-compression tests and finite element (FE) simulations. It is noticed in particular that the heat-transfer (HT) coefficient has significant effects on the metal flow and calibration curves, thereby affects the measurement of interfacial friction factor. Moreover, the HT coefficients are different for glass lubricant and dry friction conditions. Therefore, different HT coefficients should be employed to generate the calibration curves when both of the lubricant conditions were applied for determining the interfacial friction coefficients in hot ring-compression of Ti-6Al-4V titanium alloy.  相似文献   

20.
《Tribology International》2012,45(12):2074-2080
The friction factor of Ti-6Al-4V titanium alloy under hot forging situation was determined by the combined approach of ring-compression tests and finite element (FE) simulations. It is noticed in particular that the heat-transfer (HT) coefficient has significant effects on the metal flow and calibration curves, thereby affects the measurement of interfacial friction factor. Moreover, the HT coefficients are different for glass lubricant and dry friction conditions. Therefore, different HT coefficients should be employed to generate the calibration curves when both of the lubricant conditions were applied for determining the interfacial friction coefficients in hot ring-compression of Ti-6Al-4V titanium alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号