首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本论文对轴对称二维状态下的焊接应力应变过程的数值分析程序进行了相应的修正,计算分析了钛合金氩弧点焊应力应变过程并与铝合金、不锈钢计算结果进行了比较,揭示了钛合金焊接热弹塑性应力应变过程所特有的规律。用所发展的焊接热应变云纹测试技术对数值分析程序的计算结果进行了校验,在瞬态及残余状态下计算与测试结果均吻合较好,这表明数值分析程序较真实地反映了点焊应力应变实际过程。  相似文献   

2.
The prediction of temperature distribution is a critical process in the study of welding thermal field. Therefore, the accuracy in temperature measurement is quite important to provide meaningful results and to establish the coupling among thermal field results and other studies in welding as mechanical and microstructural analyses. This work deals with statistical analysis and design of experiments (DoE) in order to establish an optimal experimental design for thermal history measurements in welding processes with thermocouples independent of base material. Calculations from theoretical correlations and computational modeling of heat flow were used to accomplish the present study. The Gas Tungsten Arc Welding process (GTAW) was used in the experiments along with plates of a structural steel (ASTM A 36) and a martensitic stainless steel (AISI CrMo 12-1). Four different parameters were studied related with the disposition, separation, depth, thermocouple arrangement and application of thermal paste. An optimal design was able to measure the maximum temperatures in adjacent zones to the weld bead, which are important for the study of welding thermal behavior.  相似文献   

3.
Due to varying temperature distribution of welding area during welding process, thermal stress is generated. It is known that the thermal stress forms residual stress. The welding residual stress has an important effect on welding deformation, embrittlement fracture, fatigue fracture, etc. In this paper, residual stress due to welding was numerically investigated by finite element method. To verify the results of numerical analysis, the residual stress of high tensile steel was measured by the hole-drilling method. Temperature change experimentally measured at the location of 3-mm-off-weld-bead, in addition, was compared with the numerical analysis. The above methodologies were applied to H-plate with 13.5mm thickness through MIG welding process. The distributions of the residual stress and the temperature distributions from the experimental and the numerical analyses were confirmed to be close.  相似文献   

4.
The simulation of the welding process by means of continuum mechanics models has a very high cost both in input data preparation time and in computing time required for the integration of the complex thermoelastoplastic equations involved in solids with temperature dependent properties. For this reason, the plates in this study will be visualized as formed by a certain number of bars that can carry out elastoplastic behaviour and having temperature dependent properties. The thermal loads are simulated by analytical singular solutions, the thermomechanical problem being solved by means of an incremental algorithm of high efficiency. An excellent agreement has been found between the results numerically predicted and those previously obtained with an experimental technique and the Finite Element Method. Finally, the one-dimensional model developed here is used to predict the effects of a local heat treatment on the residual stresses originated by the welding. The versatility and rapidity of the use of this model makes it specially suitable to be used as a tool to select among different stress relieving procedures.  相似文献   

5.
利用有限元方法对挖掘机动臂平板对接焊温度场进行了分析,采用Goldak椭球热源模型,应用DFLUX子程序定义热源模型的位置、大小、热输入以及焊接速度等参数来模拟瞬态温度场的分布及其变化,在此基础上通过改变焊接热输入、热源模型参数和焊接速度来分析其对温度场分布的影响规律.研究结果表明,由于焊接热源具有集中移动的特点,焊接热源模型参数以及焊接速度对焊缝区和热影响区的温度分布影响比较明显,热输入的变化与最高温度的变化大致呈线性关系.运用有限元法,选取Goldak椭球热源模型通过DFLUX子程序可有效进行挖掘机动臂平板焊接的数值模拟.  相似文献   

6.
Double-sided double arc welding (DSAW), a high efficiency method requiring no back chipping for welding thick plate of high-strength low-alloy steel was used in this study. Gas metal arc welding is employed for backing run and filler passes. The effect of DSAW on preheating temperature is investigated. Meanwhile, numerical simulation has been performed to predict transient temperatures, which are in good agreement with the experimental results. The critical stress in DSAW without preheating is 528.31 MPa, while in conventional welding with 100 °C preheating temperature, it is 393.44 MPa. The higher critical stress implies that the samples in DSAW without preheating have better cold crack resistance than those in conventional welding with 100 °C preheating temperature. Y-slit type cracking test indicates that the samples welded by double-sided double arc demonstrate better cold crack resistance than conventional welding at the same preheating temperature. Therefore, DSAW can realize welding thick plate of high-strength low-alloy steel with lower preheating temperature or even without preheating.  相似文献   

7.
In the present work, both experimental and numerical simulation methods are used to investigate the characteristics of welding distortion and residual stress distribution. A 3D thermo-mechanical Finite Element Analysis (FEA) method is used to predict the welding distortion and residual stress of cylinder-shaped multi-pass layer weldments. Each weld pass is performed using a quarter-circle balanced welding procedure. To investigate the influence of deposition sequence and welding heat input on the welding distortion and residual stress, a continuous welding procedure is also calculated. The corresponding FEA models considered a moving heat source, the deposition sequence, and temperature-dependent thermal and mechanical properties. The results predicted by 3D FEA model are generally in good agreement with the measurements. Finally, the numerical and experimental results suggest that both deposition sequence and heat input affect welding distortion and residual stress distribution. Furthermore, the 3D thermal-mechanical FEA method can predict cylinder-type welding distortion.  相似文献   

8.
Metal cladding is a process of depositing a filler material to enhance the surface properties of base material using a suitable welding process. In this work the clad specimens are produced by surfacing a layer of filler material using weld cladding process to minimize the heat loss across the walls of the pressure vessels. It is done by depositing a low thermal conductivity austenitic stainless steel grade of 316L on structural steel plates used for boiler construction using flux cored arc welding process. The experimental study is carried out as per design of experiments availed for five factors five levels central composite design using response surface methodology. The mathematical models are developed for the prediction of clad layer height, clad layer width and depth of penetration. These models are employed in formulating fitness functions for multi-objective optimization of clad layer dimensions using genetic algorithm (GA). The set of optimal solutions suggested by response surface optimizer and genetic algorithm are compared and discussed. Conformity tests are conducted to validate the prediction capability of developed models and optimum settings. Optimum clad layer dimensions have been arrived and optimized stainless steel clad specimen has been produced. The heat transfer analysis is planned to be conducted in the next phase. The findings can be used in energy efficient design of pressure vessels.  相似文献   

9.
基于MSC.Marc非线性有限元分析软件,建立金属粉末直接选区激光烧结过程的温度场有限元分析模型。模型中考虑了粉体—实体转化过程中热导率等物理性质随温度的非线性变化规律。对于表面对流和辐射散热条件,采用修正系数的方法,考虑激光冲击加热作用引起的极大温度梯度的影响。同时还采用在不同载荷步之间转换单元材料物理性质,以考虑激光烧结过程中的局部热源输入作用。对采用在不同载荷步之间转换单元材料物理性质的方法和不采用此方法进行模拟对比研究,结果表明:前者在烧结开始时在光斑中心附近具有极大的温度梯度,这与试验结果一致;前者热传播的主要范围集中在已烧结区域,而后者热传播的范围则是整个粉床;前者进入稳态烧结后光斑中心温度变化趋于平缓,而后者的光斑中心温度一直持续上升。这主要是由于已烧结部分的材料热导率比未烧结部分的粉末高约100倍造成的。  相似文献   

10.
Some of the problems that occur during the welding process include the creation of coarse grains in the weld structure and the hardening of the weld region, which reduce the strength and impact resistance of the welded parts. One technique to improve the mechanical properties of weld is the application of mechanical vibration to the molten pool. In this article, the effect of vibrating the part during welding on the mechanical properties of steel plates has been investigated in the tungsten inert gas (TIG) welding process. The plate is made of stainless steel 304 with 2 mm in thickness. A filler material has also been used for welding so that the effect of vibration can be observed on the weld pool region. The experimental tests have been performed under different welding conditions with respect to voltage, current, welding speed, vibrations amplitude, and frequency. Then, the resultant mechanical properties of the tested parts were measured. Also, the microstructure obtained by applying the vibration has been examined. Based on these experimental results, the effect of mechanical vibration on mechanical properties of the weld was investigated. Moreover, considering the mechanical properties obtained from these experiments, the optimum values of amplitude, frequency, and welding speed were determined.  相似文献   

11.
In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value.  相似文献   

12.
有源强化传热控制薄板焊接压曲变形的研究   总被引:7,自引:2,他引:5  
针对薄板构件焊接过程中压曲变形发生的力学机理,提出有源强化传热效应控制焊接压曲变形.应用数值方法研究了有源强化传热条件下的焊接温度场演变、分布及主要影响因素,为科学利用有源强化焊接传热效应提供了依据.研究表明,有源强化传热导致焊接温度场发生畸变,进而改变焊缝区压缩塑性应变量的大小与分布,从而达到有效地控制焊接应力与变形的目的.  相似文献   

13.
Friction welding is a complicated metallurgical process that is accompanied by frictional heat generation and plastic deformation. Since the thermal cycle of friction welding is very short, simulation becomes very significant. In the present work, a finite element-based numerical model has been developed to understand the thermo-mechanical phenomenon involved in the process of friction welding. The developed model is capable of predicting thermal distribution during friction welding of ceramics with metal using an aluminum interlayer for various time increments. Frictional heating at the interfacial region consumes the aluminum interlayer and establishes a bond between alumina and mild steel. Though there is mechanical mixing, the bond is incomplete in the aluminum-alumina interface. Due to the variation of thermal properties between alumina and mild steel, more amount of thermal stress is induced at the joint interface. Numerical simulation predicts the formation of residual stress in the alumina-mild steel side of the interface. This leads to incomplete interlocking that results in poor joint strength.  相似文献   

14.
In this work, the Finite Element Method is used to simulate and visualize the maximum contact temperature of polymer composites under ring-on-block tribolgical test. The simulated temperatures are in good agreement with the experimental results under all testing conditions. The error values between the experimental and simulated temperature are less than 10%. The contact temperature is decreased to nearly 72 °C just by reduction of the friction coefficient by 40%, which is about 18 times higher than the 40% increase of thermal conductivity. The results indicate that the friction coefficient plays a more important role in the contact temperature than the thermal conductivity.  相似文献   

15.
T/R组件散热是有源相控阵雷达领域的重要课题,大功耗、高热流密度器件在冷板上会形成局部热障,产生扩展热阻。文中以干式风冷T/R组件散热为研究对象,采用三维数值模拟方法对铝冷板、金刚石/铜、热管及蒸汽腔等高效热扩展技术进行了对比研究,探讨了导热系数、冷板厚度、对流换热系数对扩展热阻的影响规律。结果表明,提高冷板的等效换热系数是减小扩展热阻、强化传热最有效的途径之一。同时合理优化冷板厚度及散热器对流换热系数能有效降低高热流密度器件的工作温度。  相似文献   

16.
为分析热效应对多孔环面接触复层含油轴承流体润滑性能的影响,建立环面接触复层含油轴承系统的热流体动压润滑模型,数值分析轴承系统的温度场及速度场分布,讨论考虑热效应时的复层含油轴承流体润滑问题及其生热、传热机制。结果表明:从轴承底面到摩擦对偶面,温度呈先升高后降低趋势,径向上温度随着半径增加而升高,系统的最高温度位于油膜区外环面上的最小膜厚处;轴承系统中的热量主要由油膜相对剪切发生,周向相对运动速度是系统生热的主要影响因素,温度与周向速度的分布形态相似,油膜产生的热量通过对流换热逐渐向多孔轴承中传导,轴承表层厚度或渗透率降低,对流换热效果变差,轴承系统中温度升高,热效应对润滑性能的影响变大;考虑热效应后,油膜润滑性能变差,但数值分析精度提高,数值结果更接近试验实测值。  相似文献   

17.
油气管线钢焊接局部脆化及断裂机理的研究   总被引:1,自引:0,他引:1  
采用焊接热模拟方法和现代物理测试技术研究了管线钢焊接热影响区的韧性变化规律。结果表明,多道焊中,当二次热循环峰值温度处于(α+γ)临界区时,管线钢HAZ的韧性最低,表现为临界粗晶区局部脆化。拉伸试验和冲击试验结果表明,管线钢临界粗晶热影响区在断裂过程中,存在夹杂物形核、铁素体与M—A组元界面形核和M—A组元内部形核三种方式。M—A组元对裂纹扩展没有阻止作用。  相似文献   

18.
在瞬时液相扩散焊焊接过程中,加热温度对焊接效果有决定性的影响。通过对增强热塑料管接头进行合理假设,在ANSYS系统中建立了三维有限元分析模型,利用ANSYS提供的热电耦合分析和瞬态温度场分析程序,对管接头焊接加热时间和瞬态温度场进行了有限元模拟,其分析结果可以为热应力分析、焊接强度分析、优化设计和实验提供一定的理论依据。  相似文献   

19.
5万m~3LNG储罐9%Ni钢的焊接和质量控制   总被引:2,自引:1,他引:1  
叶海明 《压力容器》2010,27(2):33-37,49
结合5万m3LNG低温储罐的建造,对9%Ni钢的埋弧自动横焊和手工焊条电弧焊进行了大量的工艺试验,试验表明,采用ERNiCrMo-4焊丝、相应的焊剂和合适的焊接规范能得到性能合格的焊接接头,并能实现自动焊接。介绍了大型LNG储罐9%Ni钢底板和壁板安装制造的焊接工艺及焊接顺序,控制了内罐的焊接变形;并介绍了9%Ni钢焊接质量检验的过程和射线检验采取的有效措施,保证了5万m3LNG储罐的施工质量,为LNG储罐施工的焊接检验积累了经验,对LNG储罐的建造具有重要的实用价值。  相似文献   

20.
The investigation of transient temperature profiles of a weld joint produced by the laser welding process is presented. A three-dimensional finite element model is developed using a commercial finite element code ANSYS in order to obtain the behavior of temperature field and molten pool shape during the welding process. A three-dimensional conical Gaussian heat source is employed as a heat source model for performing a non-linear transient thermal analysis. The temperature-dependent material properties of AISI 304 stainless steel sheet are taken into account, which has a great influence on the temperature fields indicated by the simulation results. The effect of latent heat and the convective and radiative boundary conditions are also included in the model. A series of laser welds are performed using a 2-kW continuous wave Nd:YAG laser welding system. The experimental trials are conducted by varying the laser input parameters namely beam power, welding speed, and beam incident angle to validate the model. The results show that there is a good agreement between the finite element simulation and the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号