首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We report the growth of Si1−yCy and Si1−xyGexCy alloys on Si(001) by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy using an argon/methane gas mixture. Various Si/Si1−yCy and Si/Si1−xyGexCy multilayers have been grown and characterized principally by X-ray diffraction and Raman spectroscopy. The influence of growth parameters and electron cyclotron resonance plasma source operating conditions on the C substitutional incorporation was studied. Under optimum growth conditions the structures show good structural properties and sharp interfaces with carbon being essentially substitutionally incorporated up to concentrations of 1%. No significant carbon incorporation was measured in films grown under a high methane partial pressure without plasma excitation. Si1−xyGexCy layers grown with this technique exhibit the strain compensation and enhanced thermal stability expected for these ternary alloys. Carbon pre-deposition of Si through surface exposure to the argon/methane plasma is shown to act as an antisurfactant on the growth of Ge islands by suppressing the formation of a Ge wetting layer on the surface.  相似文献   

2.
Si1−xGex is a prospective material for electronics. This is mostly because Si1−xGex-based technology is close to silicon-based technology, which is advanced, widely applicable, and cheap. The majority of work on this material is devoted to Si1−xGex-based heteroepitaxy, and in particular to the Si1−xGex/Si system; few publications are devoted to bulk single-crystal. Here we focus on some interesting properties of bulk Si1−xGex solid solutions. First, under heat treatment and alpha- and beta-irradiation the efficiency of defect introduction decreases with the increase of Ge composition of the Si1−xGex single-crystal. This is because Ge atoms in a crystal lattice are annihilation centers for primary defects. Hence, this material is more resistant to temperature and radiation than silicon. Second, it is known that, since Z(Ge)Z(Si), the sensitivity of the material to irradiation should increase with the concentration of Ge. We show that Si1−xGex nuclear detectors have efficiency three times higher than silicon detectors. Finally, we note that one of the major problems in materials based on solid solutions is the composition uniformity. Our investigations on the influence of composition fluctuations on material properties have shown that the material has a sufficient uniformity at x<0.1. Such an alloy is a prospective material for electronics.  相似文献   

3.
We have reported on the growth and magnetotransport properties of modulation p-doped Si1−xGex quantum wells on strained multilayers of 2.5 nm Si1−xGex/10 nm Si on vicinal (113) Si surfaces. Owing to the strong step-bunching properties of the (113) Si surface, both the Si1−xGex and the Si layers exhibited a regular pattern of large steps. Low-temperature magnetotransport measurements revealed a hole density (6–9×1011 cm−2) independent of direction, whereas a pronounced mobility anisotropy was found. The mobility (1000–2000 cm2/Vs) was approximately two times higher along the [33-2] direction compared to a perpendicular [−110] direction. This is attributed to anisotropic hole scattering caused by anisotropic shear strain which is always present in strained layers on (113) Si. No influence of the large regular steps, whose direction is given by the direction of the substrate miscut, on the mobility was found.  相似文献   

4.
Doping and electrical characteristics of in-situ heavily B-doped Si1−xyGexCy (0.22<x<0.6, 0<y<0.02) films epitaxially grown on Si(100) were investigated. The epitaxial growth was carried out at 550°C in a SiH4–GeH4–CH3SiH3–B2H6–H2 gas mixture using an ultraclean hot-wall low-pressure chemical vapor deposition (LPCVD) system. It was found that the deposition rate increased with increasing GeH4 partial pressure, and only at high GeH4 partial pressure did it decrease with increasing B2H6 as well as CH3SiH3 partial pressures. With the B2H6 addition, the Ge and C fractions scarcely changed and the B concentration (CB) increased proportionally. The C fraction increased proportionally with increasing CH3SiH3 partial pressures. These results can be explained by the modified Langmuir-type adsorption and reaction scheme. In B-doped Si1−xyGexCy with y=0.0054 or below, the carrier concentration was nearly equal to CB up to approximately 2×1020 cm−3 and was saturated at approximately 5×1020 cm−3, regardless of the Ge fraction. The B-doped Si1−xyGexCy with high Ge and C fractions contained some electrically inactive B even at the lower CB region. Resistivity measurements show that the existence of C in the film enhances alloy scattering. The discrepancy between the observed lattice constant and the calculated value at the higher Ge and C fraction suggests that the B and C atoms exist at the interstitial site more preferentially.  相似文献   

5.
Physics and applications of Si/SiGe/Si resonant interband tunneling diodes   总被引:2,自引:0,他引:2  
R Duschl  K Eberl 《Thin solid films》2000,380(1-2):151-153
Room temperature (RT) current–voltage characteristics of Si/Si1−xGex/Si p+-i-n+ interband tunneling diodes are presented. The variation of the structural properties results in a more detailed picture of the tunneling process in these diodes, which allows further improvement of the relevant parameter. Special attention is paid to the peak current density (PCD) and the peak-to-valley current ratio (PVCR) of the devices. For an optimized structure with a 3-nm thick Si0.54Ge0.46 layer in the intrinsic zone a record PVCR of 6.0 at a PCD of approximately 1.5 kA/cm2 was achieved. By reducing the layer thickness to 2.6 nm and simultaneously increasing the Ge content to 54%, the PCD increases to 30 kA/cm2 at a high PVCR of 4.8.  相似文献   

6.
In this study, we report a systematic investigation of the metastable morphologies of Si1−xGex layers obtained by the interplay of kinetics and thermodynamics during growth on Si(001). We show that three main growth regimes can be distinguished as a function of the misfit and of the deposited thickness. They correspond to three equilibrium steady state morphologies that consist of (105)-facetted hut islands, huts and domes in co-existence, and a bimodal size distribution of domes, respectively. The shape transitions between these states are attributed to different levels of relaxation.  相似文献   

7.
Structural properties of ion-beam-induced epitaxial crystallization (IBIEC) for amorphous layers of GaAs on GaAs(100), BP on BP(100) and Si1−xGex and Si1−xyGexCy on Si(100) have been investigated. Crystallization was induced by ion bombardment with 400 keV Ne, Ar or Kr at 150 °C for GaAs and at 350 °C for BP. Epitaxial crystallization up to the surface was observed both in GaAs and BP at temperatures much below those required for the solid phase epitaxial growth (SPEG). The growth rate per nuclear energy deposition density has shown a larger dependence on ion dose rate in cases of heavier ion bombardments both for GaAs and BP. Crystallization of a-GaAs with ions whose projected ranges are within the amorphous layer thickness was also observed at 150 °C. Epitaxial crystallization of Si1−xGex and Si1−xyGexCy layers (x = 0.13 and y = 0.014 at peak concentration) on Si(100) formed by high-dose implantation of 80 keV Ge and 17 keV C ions has been observed in the IBIEC process with 400 keV Ar ion bombardments at 300–400 °C. Crystalline growth by IBIEC has shown a larger growth rate in Si1−xyGexCy/Si} than in Si1−xGex/Si} with the same Ge concentration for all bombardments under investigation. X-ray rocking-curve measurements have shown a strain-compensated growth in Si1−xyGexCy/Si}, whereas Si1−xGex/Si} samples have shown a growth with strain accommodation.  相似文献   

8.
We present a new method to make bulk single crystals from Si1−xGex alloys over a wide concentration range, and the potential as a neutron monochromator in particular for high-resolution backscattering spectrometer is discussed. A first monochromator with x = 8.9 at.% has been built and its good performance is demonstrated by a measurement of the tunnel spectrum of a molecular crystal.  相似文献   

9.
Variable angle spectroscopic ellipsometry (VASE) has been used to characterize several SixGe1−x/Ge heterostructures. First, SixGe1−x/Ge superlattice (SL) structures were characterized in terms of the layer thicknesses, composition, x, of the SixGe1− x layer, and oxide thickness. High-resolution X-ray diffraction results are also presented for the SixGe1−x/Ge SL structures and are shown to be in close agreement with the VASE results once strain effects are taken into account. VASE has also been used to study thick, Ge-rich SixGe1−x/Ge heterostructures that have been grown on Si substrates. A stepped buffer has been deposited first in order to minimize the strain in the SixGe1−x/Ge layers. VASE can be used to give a qualitative determination of the residual strain along with the thickness of all layers within the optical penetration depth from the surface.  相似文献   

10.
High quality and thin relaxed SiGe films were grown on Si (0 0 1) using ultra high vacuum chemical vapor deposition (UHV/CVD) by employing an intermediate Si1−yCy layer. The Si1−yCy/SiGe bilayer was found to change mechanism of relaxation in the SiGe overlayer. Compared with the samples with a Si layer, the equilibrium critical thickness of top SiGe films with rough surface by introducing an intermediate Si0.986C0.014 layer are drastically reduced; this result was attributed to larger tensile stress in the inserted Si0.986C0.014 layer. With a 210-nm-thick Si0.8Ge0.2 overlayer, this Si0.8Ge0.2/Si0.986C0.014/Si0.8Ge0.2 heterostructure has a threading dislocation density (TDs) less than 1 × 105 cm−2 and a residual strain of 30%. The root mean square (RMS) of surface roughness for this sample was measured to be about 1.8 nm. In this SiGe/Si1−yCy/SiGe structure, C atoms in the intermediate Si layer will improve the relaxation of thin SiGe overlayer, however, the relaxation for the 700-nm-thick SiGe overlayer is independent of the addition of C. The point defects rich Si0.986C0.014 layer plays the role to confine the misfit dislocations, which formed at the interface of the top Si0.8Ge0.2 and the Si0.986C0.014 layer, and blocked the propagation of TDs. Strained-Si n-channel metal-oxide-semiconductor transistors (n-MOSFETs) with a 210-nm-thick Si0.8Ge0.2 overlayers as buffer were fabricated and examined. Drain current and effective electron mobility for the strained-Si device with this novel substrate technology was found to be 100 and 63% higher than that of control Si device. Our results show that thin relaxed Si0.8Ge0.2 films with the intermediate Si0.986C0.014 layer serve as good candidates for high-speed strained-Si devices.  相似文献   

11.
Si(001)-c(4×4) surfaces are obtained by exposing Si(001)-2×1 surfaces at 600°C to ethylene doses that determine C coverages in the submonolayer range. This reconstruction reveals a carbon enrichment of the topmost silicon layers. As the c(4×4) reflection high energy electron diffraction pattern can be maintained in spite of rather thick Si regrowth layers, we can conclude that this C derm is able to float at the surface during the Si capping. This segregation process is strongly dependent on the growth mode. As identified by RHEED intensity oscillations, a Si step flow growth is necessary to allow carbon to float in the first four silicon top-layers. An interplay is found between the kinetic growth conditions leading to this C-segregation and those of a self-organization process of C-rich clusters that we have observed in the course of Si1−yCy alloy growth obtained by codeposition of silicon and carbon.  相似文献   

12.
B-doped a-Si1−xCx:H films for a window layer of Si thin film solar cells have been prepared by the Cat-CVD method. It is found that C is effectively incorporated into the films by using C2H2 as a C source gas, where an only little C incorporation is observed from CH4 and C2H6 under similar deposition conditions. Using a-Si1−xCx:H films grown from C2H2, heterojunction p–i–n solar cells have been prepared by the Cat-CVD method. The cell structure is (SnO2 Asahi-U)/ZnO/a-Si1−xCx:H(p)/a-Si:H(i)/μc-Si:H(n)/Al. The obtained conversion efficiency was 5.4%.  相似文献   

13.
Cat-CVD method has been applied to the growth of Si–C and Si–C–O alloy thin films. Growth mechanism has been studied with emphasis on the effects of filament materials. Growth rates and alloy compositions were measured for W, Ta, Mo and Pt filaments at the filament temperatures ranging from 1300 to 2000 °C. Si1−xCx films with x ranging from 0.38 to 0.7 could be grown by using single molecule source Si(CH3)2H2 (dimethylsilane). Si–C–O ternary alloy films was successfully prepared by using Si(OC2H5)4 (tetraethoxysilane) and Si(CH3)2(OCH3)2 (dimethyldimethoxysilane) molecules.  相似文献   

14.
Thin films of different molybdenum carbides (δ-MoC1−x, γ′-MoC1−x and Mo2C) have been deposited from a gas mixture of MoCl5/H2/C2H4 at 800°C by CVD. The H2 content in the vapour has a strong influence on the phase composition and microstructure. Typically, high H2 contents lead to the formation of nanocrystalline δ-MoC1−x films while coarse-grained γ′-MoC1−x is formed with an H2-free gas mixture. This phase has previously only been synthesized by carburization of Mo in a CO atmosphere and it has therefore been considered as an oxycarbide phase stabilized by the presence of oxygen in the lattice. Our results, however, show that γ′-MoC1−x films containing only trace amounts of oxygen can be deposited by CVD. Stability calculations using a FP-LMTO method confirmed that the γ′-MoC1−x phase is stabilized by oxygen but that the difference in energy between e.g. δ-MoC0.75 and oxygen-free γ′-MoC0.75 is small enough to allow the synthesis of the latter phase in the absence of kinetic constraints. Annealing experiments of metastable δ-MoC1−x and γ′-MoC1−x films showed two different reaction products suggesting that kinetic effects play an important role in the decomposition of these phases.  相似文献   

15.
Bian Bo  Yie Jian  Cao Yi  Wu Zi-Qin   《Thin solid films》1993,230(2):160-166
The crystallization behavior of a-Si1−xCx:H/Al films after annealing has been investigated by transmission electron microscopy and Raman scattering. It is found that the crystallization process is complex and non-uniform, and that both equiaxial and branching Si grains with many twins and stacking faults arise at annealing temperatures as low as 250 °C. Both fine polycrystalline β-SiC grains and fractal-like -SiC aggregates are first observed in a few regions in a-Si1−xCx:H/Al films annealed at 350 °C. The increase of the Al grain size can cause a decrease in the crystallization temperature and a rise in the grain growth rate of Si. At higher annealing temperatures, the reaction process SiC+Al→Al4C3+Si is predominant.  相似文献   

16.
We succeeded in obtaining strained Si1−yCy films at a substrate temperature of 200 °C by the hot-wire cell method. The substitutional carbon concentration in films annealed at 700 °C was 0.9%, while it was limited to 0.13% for a sample grown by gas-source molecular beam epitaxy (MBE) at a substrate temperature of 700 °C. We investigated the thermal stability of strained Si1−yCy films for device application. Annealing at over 900 °C caused the formation of 3C-SiC and relaxation of the strain occurred. From this result, we found that the process temperature should be lower than 800 °C. A low-temperature MOSFET process, in which all process temperatures after deposition of Si1−yCy were lower than 800 °C, was developed and a strained Si1−yCy MOSFET was fabricated.  相似文献   

17.
Microcrystalline silicon carbide (μc-Si1−xCx) films were successfully deposited by the hot wire cell method using a gas mixture of SiH4, H2 and C2H2. It was confirmed by Fourier transform infrared and X-ray diffraction analyses that the films consisted of μc-Si grains embedded in a-Si1−xCx tissue. The p-type μc-Si1−xCx films were deposited using B2H6 as a doping gas. A dark conductivity of 0.2 S/cm and an activation energy of 0.067 eV were obtained. The p-type μc-Si1−xCx was used as a window layer of a-Si solar cells, in which the intrinsic layer was deposited by photo-chemical vapor deposition, and an initial conversion efficiency of 10.2% was obtained.  相似文献   

18.
Zn1−xCdxSe epitaxial growth by molecular beam epitaxy (MBE) on the GaAs (110) surface cleaved in ultra high vacuum (UHV) was investigated. The growth mode of Zn1−x CdxSe on GaAs (110) was not a simple Stranski–Krastanow type. At initial growth stage, growth mode was two-dimensional type. However, as the growth proceeds three-dimensional island growth and two-dimensional growth modes compete. As a result, two kinds of structures were spontaneously formed on the surface, pyramidal-shaped islands and ridge structures aligned to the [1 0] direction. Anisotropic in-plane strain relaxation on (110) is suggested as the formation mechanism of such structures.  相似文献   

19.
Solid solutions of Bi3(Nb1−xTax)O7 (x = 0.0, 0.3, 0.7, 1) were synthesized using solid state reaction method and their microwave dielectric properties were first reported. Pure phase of fluorite-type could be obtained after calcined at 700 °C (2 h)−1 between 0 ≤ x ≤ 1 and Bi3(Nb1−xTax)O7 ceramics could be well densified below 990 °C. As x increased from 0.0 to 1.0, saturated density of Bi3(Nb1−xTax)O7 ceramics increased from 8.2 to 9.1 g cm−3, microwave permittivity decreased from 95 to 65 while Qf values increasing from 230 to 560 GHz. Substitution of Ta for Nb modified temperature coefficient of resonant frequency τf from −113 ppm °C−1 of Bi3NbO7 to −70 ppm °C−1 of Bi3TaO7. Microwave permittivity, Qf values and τf values were found to correlate strongly with the structure parameters of fluorite solid solutions and the correlation between them was discussed in detail. Considering the low densified temperature and good microwave dielectric proprieties, solid solutions of Bi3(Nb1−xTax)O7 ceramics could be a good candidate for low temperature co-fired ceramics application.  相似文献   

20.
By the solid reaction method, undoped, potassium doped and niobium doped lead zirconate titanate (PZT) are elaborated. The mechanical losses measured in the range of the Hz as a function of temperature shows two peaks R1 and R2, and a ferroelectric transition peak P1 between ferroelectric and para-electric states on the undoped PZT—Pb(Zr0.54Ti0.46)O3—noted PZT54/46. Potassium doped PZT—Pb1−xKx(Zr0.54Ti0.46)O3—shortly called PKZT 100x/54/46 shows an increase in the height of both the peaks at a doping content, x, less than 0.5 at.% but an opposite effect is observed above this value. Niobium doped PZT—Pb[(Zr0.54Ti0.46)1−yNby]O3—shortly called PNZT 100y/54/46, shows the vanish of the R2 peak and the decrease of the height of the R1 peak when the doping content increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号