首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
文章概述了IEEE1588时间同步协议技术原理,介绍了一种基于IEEE1588同步对时方式的电子式互感器校验装置的设计方案和技术特点,应用本装置对电子式互感器进行误差校验,为IEEE1588对时协议在智能电网中的应用提供参考.  相似文献   

2.
电力骨干通信网时间同步系统   总被引:2,自引:0,他引:2  
电力骨干通信系统是一个复杂的分布式系统,对时钟同步精度有着较高的要求.结合电力行业的现状提出了电力骨干通信网时间同步的解决方案--基于IEEE 1588精确时间同步协议,以"GPS/北斗卫星"为主,"地面SDH"为辅的天地互备时间同步系统.详细分析了IEEE 1588协议,介绍了时间同步的原理及其过程,详细分析了最佳主...  相似文献   

3.
随着基于以太网技术在分布式系统的广泛应用,分布式系统时钟同步问题迫切的需要解决.文章提出了基于Cortex-M3的微控制器LM3S8962的IEEE 1588时钟同步协议的实现方案,介绍了LM3S8962芯片硬件时间戳的生成和IEEE 1588从时钟的实现,并分析了影响时钟同步精度的因素.并最终利用LM3S8962硬件平台,实现了IEEE 1588协议.测试结果表明,利用M3芯片内部对IEEE 1588协议硬件支持的功能,可以达到系统高精度的时间同步要求.  相似文献   

4.
IEEE1588时钟同步协议在数字化变电站中的应用探讨   总被引:2,自引:2,他引:0  
针对IEC61850对变电站内不同应用层面的同步精度要求,比较了硬接线同步方式、简单网络时间协议(SNTP)和IEEE1588精确时间协议(PTP)的优缺点.介绍了IEEE1588时间协议的时钟类型以及它们之间的关系,详细分析了IEEE1588时间同步的基本原理.应用目前硬件支持条件,论证了在数字化变电站中应用IEEE...  相似文献   

5.
对电力行业PTP规范文件IEEE C37.238-2011标准进行总结和分析。首先介绍电力行业PTP规范与IEEE1588标准的关系,然后介绍电力行业PTP规范定义的参数、机制等与IEEE1588标准的不同之处以及其特有的一些参数,最后分析PTP精确时间同步协议在以后应用中可能面临的问题及解决办法。电力行业PTP规范为了给外界提供全球可用时间、设备互操作和故障管理,在IEEE Std 1588-2008标准基础上规定了新的PTP参数子集和特权。新的PTP参数子集和特权使基于IEEE1588的时间同步机制可以通过以太网通信结构在电力系统关键领域得到有效应用,这些领域包括保护、控制、自动化和数据通信等。  相似文献   

6.
通过比较各种时间同步协议的优缺点,提出基于IEEE1588协议实现船舶综合电力系统同步数据采集的方案。分析了IEEE1588协议的偏移测量和延迟测量原理,指出时间戳是影响同步精度的主要因素,并比较了在不同协议层获取时间戳的同步性能。给出了基于环形冗余工业以太网实现主、从时间同步的网络拓扑结构,并基于DP83640芯片设计了同步测量节点,实现了数据的同步采集与网络传输。设计过零检测实验并测试同步性能,同步精度低于1μs。结果表明,使用IEEE1588协议可以在不显著增加成本的基础上,为电力系统提供实时、高精度、严格同步的量测量,满足基于局域网的舰船电力系统监控和计算的需要。  相似文献   

7.
基于网络的IEEE 1588时间同步协议(PTP),是适应未来智能变电站关键应用要求的精确时间同步方式。提出了一种利用故障树分析对PTP可靠性进行量化评估的方法,对IEEE PC37.238推荐的PTP网络结构可用性进行理论计算,分析影响PTP对时可靠性的关键因素,对已建系统可靠性进行量化评估,并提出了PTP网络时延和PTP对时网络的架构优化策略,提高了IEEE 1588时间同步系统的可用性。  相似文献   

8.
智能变电站IEEE 1588同步时延优化方法   总被引:1,自引:1,他引:0  
针对智能变电站时间同步过程中通信网络的路径时延抖动导致同步精度下降问题,提出一种基于IEEE 1588时间同步协议的时延优化方法。首先分析智能变电站环境下路径时延抖动同步误差过程,实现同步误差产生机理的量化分析;然后阐述所提出的同步时延优化方法,方法在IEEE 1588协议框架下实现从时钟的基本时钟补偿基础上,拓展时延测量机制获取路径时延抖动的时钟补偿最佳估计值,实现从时钟同步时间的二次时钟补偿,减少路径时延抖动对同步精度影响;最后以智能变电站中典型IEEE 1588协议端到端透明时钟同步模式搭建仿真实验验证所提方法。实验结果表明所提方法能够提高智能变电站中从时钟同步精度和稳定性。  相似文献   

9.
IEEE1588精密时钟同步协议的分析与实现   总被引:3,自引:1,他引:2  
LXI(LAN-based Extensions for Instrumentation)技术的提出进一步推动了测试测量领域的发展,基于IEEE1588精确时钟同步协议的时间同步触发是LXI B类仪器的一个主要特点。本文介绍了IEEE1588精密时钟协议,详细分析了其同步原理,并介绍了一种实现IEEE1588协议的方案,从时钟通过与主时钟交换报文获取时间戳,根据时间戳计算出与主时钟的时间偏差并对自己的时钟进行修正。最后对所设计的系统进行了测试,测试结果显示系统能实现时钟同步。  相似文献   

10.
介绍并分析了网络测量和控制系统的精确时钟同步协议IEEE 1588,通过与目前应用广泛的网络时间协议(NTP)相比较,指出其高精度时钟同步实现机制的特殊性。针对IEC 61850所定义的过程总线上采样值高精度同步要求,提出了一种基于IEEE 1588的合并单元同步实现的新方案。在此方案中,利用现场可编程门阵列(FPGA)对IEEE 1588同步报文时标生成点进行精确确定,IEEE 1588同步协议的实现利用微控制器完成。  相似文献   

11.
伴随着变电站自动化系统标准化、智能化、网络化、综合化的发展趋势,智能变电站要求在实现一次设备智能化、二次设备网络化的基础上,建立基于工业以太网的高精度、技术统一的时钟同步系统 因为网络时间协议的精度无法满足智能变电站的微秒级精度要求,所以支持IEEE1588(PTP技术)的工业以太网成为智能变电站时钟同步方式的首选....  相似文献   

12.
针对智能变电站的交换机中本地时钟波动导致的时间同步系统可靠性差的问题,提出基于IEEE1588精确时钟协议(PTP)同步报文的交换机测试方法,并研发了手持式IEEE1588交换机测试仪。首先,通过协议报文获取报文时间戳、交换机驻留时间和路径延时时间;然后,计算测试仪与交换机的主从时间偏差值,得到被测交换机的同步误差;最后,通过现场测试证明所研发测试仪对交换机授时的测量和监控精度达到ns级,可满足实际应用需求。  相似文献   

13.
高精度的时钟同步对于保证智能变电站继电保护的正常工作具有举足轻重的作用。基于IEEE 1588v2标准的透明时钟的应用可进一步提高智能变电站时钟同步的精度。分析了基于IEEE 1588v2的透明时钟基本原理,从主时钟负载、网络拓扑变化的适应性和同步精度等方面对对等(P2P)透明时钟和端到端(E2E)透明时钟进行了比较和实验研究。结果表明,2种透明时钟均能满足智能变电站1μs的同步精度要求,但P2P透明时钟的整体性能要优于E2E透明时钟,因此建议在智能变电站中采用P2P透明时钟。  相似文献   

14.
为了解决普通对时模式在分布式以太网络中对时精度低或专网施工复杂等问题,在智能变电站以太网络中引入IEEE1588时钟同步协议。分析和研究了IEEE1588普通时钟、边界时钟和透明时钟模型的校准特性和时钟属性,并搭建智能变电站仿真网络结构模型,进行模型验证和校准特性仿真测试验证,仿真测试结果表明IEEE1588协议应用在智能变电站以太网络中提高了时钟同步精度,简化了智能变电站网络结构,具有推广应用的现实价值。  相似文献   

15.
智能变电站和智能电网的发展对电力系统时钟同步提出了更高的要求,文中阐述了网络时钟同步的基本方法,并着重分析了IEEE 1588实现高精度时钟同步的主要原理.在研制IEEE 1588主时钟、从时钟和交换机的基础上,对点对点IEEE 1588和网络IEEE 1588两种同步方案进行了实验验证.结果表明,两种时钟同步方式均可...  相似文献   

16.
为确保支持 IEEE 1588精密时间协议(precision time protocol,PTP)的各厂家智能设备能互连互通及稳定时间同步,对此类设备进行 IEEE 1588一致性测试是十分必要的.为此在简要介绍 IEEE C37.238—2011(电力 PTP Profile)基础上,提出了电力系统 IEEE 1588一致性测试的测试方法,分析了 IEEE 1588一致性测试应具备的测试结构,描述了基于测试案例的一致性测试流程,详细说明了 IEEE 1588一致性测试的测试内容,总结了 IEEE 1588一致性测试的实施关键点  相似文献   

17.
工业以太网的时钟同步协议对比分析   总被引:4,自引:0,他引:4  
彭杰  李秀元  应启戛 《低压电器》2006,(9):45-47,57
分析了目前在工业以太网应用中的3类时钟同步协议SNTP、IEEE1588及改进的IEEE1588。具体说明了精确时钟同步协议标准IEEE1588的基本原理,以及Profinet对IEEE1588的改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号