首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The development of bioactive scaffolds with a designed pore configuration is of particular importance in bone tissue engineering. In this study, bone scaffolds with a controlled pore structure and a bioactive composition were produced using a robotic dispensing technique. A poly(ε-caprolactone) (PCL) and hydroxyapatite (HA) composite solution (PCL/HA = 1) was constructed into a 3-dimensional (3D) porous scaffold by fiber deposition and layer-by-layer assembly using a computer-aided robocasting machine. The in vitro tissue cell compatibility was examined using rat bone marrow stromal cells (rBMSCs). The adhesion and growth of cells onto the robotic dispensed scaffolds were observed to be limited by applying the conventional cell seeding technique. However, the initially adhered cells were viable on the scaffold surface. The alkaline phosphatase activity of the cells was significantly higher on the HA–PCL than on the PCL and control culture dish, suggesting that the robotic dispensed HA–PCL scaffold should stimulate the osteogenic differentiation of rBMSCs. Moreover, the expression of a series of bone-associated genes, including alkaline phosphatase and collagen type I, was highly up-regulated on the HA–PCL scaffold as compared to that on the pure PCL scaffold. Overall, the robotic dispensed HA–PCL is considered to find potential use as a bioactive 3D scaffold for bone tissue engineering. Seok-Jung Hong and Ishik Jeong contributed equally.  相似文献   

2.
This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212–295, 295–425, or 425–531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83–92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.  相似文献   

3.
Poly(propylene fumarate) (PPF) is an ultraviolet-curable and biodegradable polymer with potential applications for bone regeneration. In this study, we designed and fabricated three-dimensional (3D) porous scaffolds based on a PPF polymer network using micro-stereolithography (MSTL). The 3D scaffold was well fabricated with a highly interconnected porous structure and porosity of 65%. These results provide a new scaffold fabrication method for tissue engineering. Surface modification is a commonly used and effective method for improving the surface characteristics of biomaterials without altering their bulk properties that avoids the expense and long time associated with the development of new biomaterials. Therefore, we examined surface modification of 3D scaffolds by applying accelerated biomimetic apatite and arginine-glycine-aspartic acid (RGD) peptide coating to promote cell behavior. The apatite coating uniformly covered the scaffold surface after immersion for 24 h in 5-fold simulated body fluid (5SBF) and then the RGD peptide was applied. Finally, the coated 3D scaffolds were seeded with MC3T3-E1 pre-osteoblasts and their biologic properties were evaluated using an MTS assay and histologic staining. We found that 3D PPF/diethyl fumarate (DEF) scaffolds fabricated with MSTL and biomimetic apatite coating can be potentially used in bone tissue engineering.  相似文献   

4.
In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.  相似文献   

5.
Tissue engineering requires the development of three-dimensional water-stable scaffolds. In this study, silk fibroin/chitosan (SFCS) scaffold was successfully prepared by freeze-drying method. The scaffold is water-stable, only swelling to a limited extent depending on its composition. Fourier Transform Infrared (FTIR) spectra and X-Ray diffraction curves confirmed the different structure of SFCS scaffolds from both chitosan and silk fibroin. The homogeneous porous structure, together with nano-scale compatibility of the two naturally derived polymers, gives rise to the controllable mechanical properties of SFCS scaffolds. By varying the composition, both the compressive modulus and compressive strength of SFCS scaffolds can be controlled. The porosity of SFCS scaffolds is above 95% when the total concentration of silk fibroin and chitosan is below 6 wt%. The pore sizes of the SFCS scaffolds range from 100 μm to 150 μm, which can be regulated by changing the total concentration. MTT assay showed that SFCS scaffolds can promote the proliferation of HepG2 cells (human hepatoma cell line) significantly. All these results make SFCS scaffold a suitable candidate for tissue engineering.  相似文献   

6.
The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival.In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold.  相似文献   

7.
The fabrication of 3-dimensional (3D) tissue scaffolds is a competitive approach to engineered tissues. An ideal tissue scaffold must be highly porous, biocompatible, biodegradable, easily processed and cost-effective, and have adequate mechanical properties. A casting based process has been developed in this study to fabricate 3D alginate tissue scaffolds. The alginate/calcium gluconate hydrogel was quenched in a glass mold and freeze dried to form a highly porous tissue scaffold whose tiny pores retain the shape of the ice crystals during quenching. Knowing that the water in the alginate hydrogel would form ice crystals if frozen and that different cooling conditions may dramatically influence the pore architecture, the speed and direction of the heat transfer in freeze drying hydrogel were examined with regard to pore size and orientation. The pore architecture at the different locations of the fabricated scaffolds was characterized using scanning electron microscopy. The fabricated scaffolds consist of pores that are highly interconnected, with a diameter about 200 µm (average diameter of a capillary) to permit blood vessel penetration. It also has been found that the pore size, orientation, and uniformity are significantly affected by the condition of heat transfer during freeze drying. Tailoring the pore architecture of the scaffolds is feasible by controlling heat transfer. This study provides an insight on pore architecture formation and control by altered process parameters.  相似文献   

8.
One of the challenges in tissue engineering scaffold design is the realization of structures with a pre-defined multi-scaled porous network. Along this line, this study aimed at the design of porous scaffolds with controlled porosity and pore size distribution from blends of poly(ε-caprolactone) (PCL) and thermoplastic gelatin (TG), a thermoplastic natural material obtained by de novo thermoplasticization of gelatin. PCL/TG blends with composition in the range from 40/60 to 60/40 (w/w) were prepared by melt mixing process. The multi-phase microstructures of these blends were analyzed by scanning electron microscopy and dynamic mechanical analysis. Furthermore, in order to prepare open porous scaffolds for cell culture and tissue replacement, the TG and PCL were selectively extracted from the blends by the appropriate combination of solvent and extraction parameters. Finally, with the proposed combination of gas foaming and selective polymer extraction technologies, PCL and TG porous materials with multi-scaled and highly interconnected porosities were designed as novel scaffolds for new-tissue regeneration.  相似文献   

9.
In this study, porous chitosan scaffolds were prepared by freeze-dried method using Na5P3O10 as a crosslinking agent. The three-dimensional pore structure of the scaffold was interconnected with a mean pore size about 40 to 100 μm. The remained weight of crosslinked scaffold was about 76% after being exposed to PBS for 30 days. Mouse embryonic stem (E. S.) cells could grow on these crosslinked scaffolds. E. S. cells differentiated to other cells after 21 days of culturing on the scaffolds. The growth rate of E. S. cells was improved by post surface treatment of the scaffolds with collagen. However, there was no significant increase in growth rate of E. S. cells when scaffolds were surface treated with argon plasma. These porous chitosan scaffolds present a promising approach for tissue engineering applications.  相似文献   

10.
Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive® Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 ± 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering.  相似文献   

11.
Scaffold design remains a main challenge in tissue engineering due to the large number of requirements that need to be met in order to create functional tissues in vivo. Computer simulations of tissue differentiation within scaffolds could serve as a powerful tool in elucidating the design requirements for scaffolds in tissue engineering. In this study, a lattice-based model of a 3D porous scaffold construct derived from micro CT and a mechano-biological simulation of a bone chamber experiment were combined to investigate the effect of scaffold stiffness on tissue differentiation inside the chamber. The results indicate that higher scaffold stiffness, holding pore structure constant, enhances bone formation. This study demonstrates that a lattice approach is very suitable for modelling scaffolds in mechano-biological simulations, since it can accurately represent the micro-porous geometries of scaffolds in a 3D environment and reduce computational costs at the same time.  相似文献   

12.
Scaffold development using 3D printing with a starch-based polymer   总被引:15,自引:0,他引:15  
Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests.  相似文献   

13.
We have developed a novel wide-pore scaffold for cell 3D culturing, based on the technology of freeze-drying of Ca-alginate and gelatin. Two different preparation methodologies were compared: (i) freeze-drying of Na-alginate + gelatin mixed solution followed by the incubation of dried polymer in saturated ethanolic solution of CaCl2; (ii) freeze-drying of the Na-alginate solution followed by the chemical “activation” of polysaccharide core with divinylsulfone with subsequent gelatin covalent attachment to the inner surfaces of pore walls. The scaffolds produced using the first approach did not provide adhesion and proliferation of human bone marrow mesenchymal stromal cells (MSCs). Conversely, the second approach allowed to obtain scaffolds with a high adherence ability for the cells. When cultured within the latter type of scaffold, MSCs proliferated and were able to differentiate into adipogenic, osteogenic and chondrogenic cell lineages, in response to specific induction stimuli. The results indicate that Ca-alginate wide-pore scaffolds with covalently attached gelatin could be useful for stem cell-based bone, cartilage and adipose tissue engineering.  相似文献   

14.
Titania/chitosan composite scaffolds were prepared through a freeze-drying technique. The composite scaffolds were highly porous with the average pore size of 120–300 μm, and the titania (TiO2) powders were uniformly dispersed on the surface of the pore walls. The compressive strength of the composite scaffolds was significantly improved compared to that of pure chitosan scaffolds. Composite scaffold with 0.3 of TiO2/chitosan weight ratio showed the maximum compressive strength of 159.7 ± 21 kPa. Hepatic immortal cell line HL-7702 was used as seeding cells on the scaffolds, and after different culture periods, cell attachment and function was analyzed. HL-7702 cells attached on the pore walls of the scaffolds with the spheroid shape after 1 day of culture, but more cell aggregations formed within the TiO2/chitosan composite scaffolds as compared to pure chitosan scaffolds. Liver-specific functions, albumin secretion and urea synthesis were detected using a spectrometric method. The results showed that albumin secretion and urea synthesis rate of HL-7702 cells slightly decreased with the culture time, and there was no significant difference between composite scaffolds and pure chitosan scaffolds. In conclusion, the TiO2/chitosan composite scaffolds possessed an improved mechanical strength compared to pure chitosan scaffolds and supported the attachment and functional expression of hepatocyte, implying their potential application in liver tissue engineering.  相似文献   

15.
Many attempts have been focused on preparing highly porous scaffolds with appropriate mechanical strength. This paper has developed a new route to enhance the compressive strength of porous HA (hydroxyapatite) scaffold (porosity: ∼ 83%, mean pore size:∼ 800 μm). Briefly this route included nanostructure coating of bioactive glass on struts of porous HA. Coating microstructure consisted of the grains with the range between 91 and 320 nm and micron size pores that could be detected by SEM observation. This simple method improved the compressive strength of highly porous HA from 0.22 to 1.49 MPa. The obtained scaffolds provided good mechanical support while maintaining bioactivity so they could be used as tissue engineering scaffolds for low-load bearing applications.  相似文献   

16.
Freeze-extraction, which involves phase separation principle, gave highly porous scaffolds without the time and energy consuming freeze-drying process. The presented method eliminates the problem of formation of surface skin observed in freeze-drying methods. The effects of different freezing temperature (−80 and −24°C), medium (dry ice/ethanol bath and freezer) and polymer concentrations (1, 3, and 5 wt.%) on the scaffold properties were investigated in connection with the porous morphology and physicomechanical characteristics of the final scaffolds. The FESEM micrographs showed porous PLLA scaffolds with ladder-like architecture. The size of the longitudinal pores was in the range of 20–40 μm and the scaffolds had high porosity values ranging from 90% to 98%. Variation in porosity, mechanical resistance, and degree of regularity in the spatial organization of pores were observed when polymer concentration was changed. More open scaffold architecture with enhanced pore interconnectivity was achieved when a dry ice/ethanol bath of −80°C was used. Polymer concentration played an important role in fabricating highly porous scaffolds, with ladder-like architecture only appearing at polymer concentrations of above 3 wt.%. With the freeze-extraction method used here, highly porous and interconnected poly(l-lactide) scaffolds were successfully fabricated, holding great potential for tissue engineering applications.  相似文献   

17.
Here we produced macroporous and nanofibrous scaffolds with bioactive nanocomposite composition, poly(lactic acid) (PLA) incorporating bioactive glass nanoparticles (BGnp) up to 30 wt%, targeting bone regeneration. In particular, the nanofibrous structure in the scaffolds was generated by using a bicyclic monoterpene, camphene (C10H16), through a phase-separation process with PLA-BGnp phase in chloroform/1,4-dioxane co-solvent. Furthermore, macropores were produced by the impregnation of salt particles and their subsequent leaching out, followed by freezing and lyophilization processes. The produced PLA-BGnp scaffolds presented highly porous and nanofibrous structure with porosities of 90–95% and pore sizes of over hundreds of micrometers. BGnp with sizes of ∼90 nm were also evenly impregnated within the PLA matrix, featuring a nanocomposite structure. The nanofibrous scaffolds exhibited enhanced hydrophilicity and more rapid hydrolytic degradation as the incorporated BGnp content increased. The bone-bioactivity of the scaffolds was substantially improved with the incorporation of BGnp, exhibiting rapid formation of apatite throughout the scaffolds in a simulated body fluid. The developed macroporous and nanofibrous scaffolds with PLA-BGnp bioactive composition are considered as a novel 3D matrix potentially useful for bone tissue engineering.  相似文献   

18.
A simple new methodology to preapre 3-dimensional (3D) porous scaffold of biodegradable polymer was exploited by using hydrophilic types of ionic liquids. The mixture of poly(lactic acid) (PLA) and ionic liquid within dichloromethane solvent was phase-separated during the solvent evaporation, after which the ionic liquid phase was selectively extracted to provide interconnected macropores. The pore sizes of the PLA scaffold were highly dependent on the types of ionic liquids (anion variant), ranging from tens to hundreds of micrometers, and the porosity reached to ~ 85-95%. The ionic liquid-directed technique to prepare porous structure reported for the first time herein will be highly effective in the development of polymer skeletons for tissue engineering biomaterials. In addition, the ionic liquids recovered by a simple extraction with ethanol or water can be reused for subsequent runs without the loss of its physicochemical properties.  相似文献   

19.
Demand to develop a simple and adaptable method for preparation the hierarchical porous scaffolds for bone tissue regeneration is ever increasing. This study presents a novel and reproducible method for preparing the scaffolds with pores structure spanning from nano, micro to macro scale. A macroporous Sr-Hardystonite (Sr–Ca2ZnSi2O7, Sr–HT) scaffold with the average pore size of ~ 1200 μm and porosity of ~ 95% was prepared using polymer sponge method. The struts of the scaffold were coated with a viscous paste consisted of salt (NaCl) particles and polycaprolactone (PCL) to provide a layer with thickness of ~ 300–800 μm. A hierarchical porous scaffold was obtained with macro, micro and nanopores in the range of 400–900 μm, 1–120 μm and 40–290 nm, after salt leaching process. These scales could be easily adjusted based on the starting foam physical characteristics, salt particle size, viscosity of the paste and salt/PCL weight ratio.  相似文献   

20.
Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号