首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
分别考察了反应温度、反应时间和反应物料液比对蓝藻在亚超临界水中的热化学液化效果的影响,结果表明,在反应温度为380℃,反应时间为40 min,反应物料液比为1:20时,液化效果最好,总转化率和油产率分别达到94.5%和41.3%.生物油的GCMS、元素和热值分析表明,生物油的主要成分是芳香族、吡咯和吡啶衍生物等物质,生...  相似文献   

2.
利用微藻热化学液化制备生物油的研究进展   总被引:1,自引:0,他引:1  
微藻是制备生物质液体燃料的良好材料,利用微藻热化学液化制备生物油在环保和能源供应方向都具有非常重要的意义。目前国内外研究者主要采用快速热解液化和直接液化两种热化学转化技术进行以微藻为原料制备生物油的研究。快速热解生产过程在常压下进行,工艺简单、成本低、反应迅速、燃料油收率高、装置容易大型化,是目前最具开发潜力的生物质液化技术之一。但快速热解需要对原料进行干燥和粉碎等预处理,微藻含水率极高,会消耗大量的能量,使快速热解技术在以微藻为原料制备生物油方面受到限制。直接液化技术反应温度较快速热解低,原料无需烘干和粉碎等高耗能预处理过程,且能产生更优质的生物油,将会是微藻热化学液化制备生物油发展的主流方向,极具工业化前景。国内外研究者还尝试利用超临界液化、共液化、热化学催化液化、微波裂解液化等多种新型液化工艺进行微藻热化学液化制备生物油的实验研究。今后的主要研究方向应是将热化学液化原理研究、生产工艺开发、反应器研发、反应条件优化、产品精制等有机地结合起来,进行深入研究。同时应努力节约成本、降低能耗。  相似文献   

3.
微藻热化学催化液化及生物油特性研究   总被引:2,自引:0,他引:2  
以杜氏盐藻为原料,乙二醇为液化介质、浓硫酸为催化剂进行热化学液化反应.运用中心组合设计及响应面分析(RSA),在单因素试验的基础上建立了预测杜氏盐藻液化产率的数学模型.回归分析表明,液化温度、停留时间与催化剂用量及其交互作用对液化都有显著影响.以液化产率为响应值作响应面和等高线图,揭示了各参数交互关系.通过响应面优化,求得最佳工艺条件为:催化剂用量2.4%,液化温度170℃,停留时间33min,在此条件下液化率达到97.05%.基于生物油广泛应用的目的,对产物生物油的物理化学性质进行了研究,并结合FT-IR、~(13)C-NMR、GC-MS等技术对生物油的主要组分分布进行了分析.结果表明:生物油的主要成分为苯并呋喃酮30.43%、C14~C18有机酸甲酯23.25%和C14~C18有机酸羟乙基酯27.89%.生物油由于高的含氧量,需要进一步改性才能高端应用.  相似文献   

4.
使用气相色谱-质谱(GC-MS)法,分离和鉴定了泡桐在间歇反应釜中以水为溶剂直接液化制得的生物油的化学成分。用峰面积归一化法分别对水相二氯甲烷可溶物(轻油)和油相丙酮可溶物(重油)检索图谱库,得出各化合物在生物油中的百分含量。研究结果表明:轻油中鉴定出81种组分,其中含量0.6%的有33种且这33种成分的总含量为87.12%,轻油中主要组成为酚类、酮类、脂肪酸及芳香酸、呋喃衍生物、酯和醛;重油中鉴定出100种组分,其中含量0.6%的有37种且这37种成分的总含量为78.66%,重油中主要组成为酚类衍生物、分子量较大的酮类、脂肪酸、芳香酸、酯、苯衍生物和醛。因此,生物油的GC-MS法分析结果为其在化工和能源方面的综合利用提供了基础资料。  相似文献   

5.
稻草水热法液化的实验研究   总被引:1,自引:0,他引:1  
以农业废物稻草为研究对象,利用非等温技术,考察了农业废物在亚临界水(温度350℃,压力约20MPa)及超临界水(温度380℃,压力约30MPa)中的液化行为,并对反应获得的固体残渣和生物油进行了分析。实验结果表明。固体残渣的结构遭到较严重的破坏,质地变得松散,有利于进行生物发酵。实验获得的生物油成分主要为酮类和酚类的衍生物,其能量密度比原料提高将近一倍,但是黏度较大,酸性较强。在超临界状态下,固体残渣得率较低,液化效率高,获得的生物油的组分相对简单,酸性较弱,故稻草在超临界水中的液化优于其在亚临界水中的液化。  相似文献   

6.
纤维素亚临界和超临界水液化实验研究   总被引:8,自引:0,他引:8  
在温度为340~420℃、压力为30~40MPa的实验条件下,对亚临界和超临界水中纤维素液化进行实验研究,液化产物经GC—MS分析,得到其主要成分是糠醛、5-甲基糠醛、5-羟甲基糠醛和一些含甲基、羟基、羟甲基等官能团的酮类、苯酚类化合物,且反应温度变化时,液化产物成分和浓度有较大变化;对纤维素液化转化率有重要影响的两个因素——反应温度和纤维素与水质量比进行初步实验研究,结果表明:(1)反应温度为380℃左右。液化转化率最高;(2)纤维素与水的质量比为1:15左右,转化率达最大值。  相似文献   

7.
生物质高压液化制生物油研究进展   总被引:2,自引:0,他引:2  
以生物质为原料进行高压液化制备生物油是目前生物质能领域研究的一个热点。纤维素在水中的降解是复杂的竞争和连串反应机理;在180℃以上,半纤维素就很容易水解,而且不管是酸还是碱都能催化半纤维素的水解反应;在水热条件下木质素会发生分解,生成多种苯酚、甲氧基苯酚等,这些产物可进一步被水解成甲氧基化合物。影响生物质液化产率及生物油组成的主要因素是温度、生物质类型和溶剂种类;次要因素包括停留时间、催化剂、还原性气体和供氢溶剂、加热速率、生物质颗粒大小、反应压力等。纤维素类生物质通过高压液化可以生产生物油,生物油经物理精制及化学加工可以制取车用燃料、生物气及化工产品等。生物油有轻油和重油之分,都是通过对生物质液化产物的分离精制而得到的。目前用来分析生物油的主要方法包括GC-MS(色-质联用)、EA(元素分析)、FTIR(傅里叶变换红外光谱)、HPLC(高效液相色谱)、NMR(核磁共振)、TOC(总有机碳测定)等。人们对生物质高压液化研究已经进行多年,并建立了几套工业试验示范装置。不过因为操作条件太苛刻,到目前为止还没有建立商业化装置。  相似文献   

8.
以蓝藻为研究对象,并以松木为参照,在流化床反应器中进行了热解液化制取生物油的试验研究,考察了温度对两种生物质原料热解产物的影响。研究表明,随着温度的升高,蓝藻和松木的产气率逐渐增加,产炭率逐渐减小,产油率先增加后减小,当温度为500℃时,达到最大值分别为50.4%和45.2%。采用气质联用(GCMS)测定两种生物质热解生物油的化学组成。结果表明:两种生物油的化学组分及相对含量存在一定的差异,但均属于相同的化学族类,其主要组成成分为含氮化合物、烃类、酮类、醇类、酸类、苯酚类等化合物。此外,通过元素分析可知,蓝藻生物油含氧量较松木低,有利于油品质的提高,使蓝藻热解液化制取生物油具有良好的发展前景。  相似文献   

9.
水热液化是“双碳”背景下实现废弃生物质资源化、能源化利用的有效途径,特别是针对含水率高的污泥,可将其直接转化为生物油。然而水热液化转化效率和生物油中化合物的形成取决于水热液化工艺的各种参数,其中合适的催化剂在水热液化反应中具有非常重要的作用。均相催化剂中的碱催化剂主要作用于碳水化合物、木质素以及脂质等物质的液化反应,能够有效降低生物油中的氧含量,并能将生物油产率提高到48%左右。而酸催化剂可以促进蛋白质的水解以及脱氨反应,将生物油中的氮元素转移到水相中,从而降低生物油中的氮元素含量,提高生物油品质。非均相催化剂则促进了脱羧反应及美拉德反应,尤其是金属负载型催化剂,双金属的协同作用及过渡金属的加氢作用,将生物油产率最高提高至53.12%(Ni/Mo催化剂)。今后对各类催化剂的具体作用机理仍需进一步明确,以期开发出高性能、稳定性好、高选择性且成本适宜的催化剂,在提高生物油产率的同时改善生物油品质。  相似文献   

10.
小桐子油在亚临界水中水解反应的试验研究   总被引:1,自引:0,他引:1  
以小桐子油为原料,对油脂在亚临界水-超临界甲醇两步法制备生物柴油的第一步水解反应中水解的影响因素和反应动力学进行了研究。试验结果表明,在小桐子油与水体积比为1:3,反应温度290℃,反应时间40min时,小桐子油水解反应最为合适,转化率为98.9%。对此水解反应进行了动力学分析,得到小桐子油在亚临界水中水解反应的平均反应级数为0.78,活化能为55.34kJ/mol,动力学模型为-(dc_A/dt)=7254.96e~(-55.34/RT)c_A~(0.78)。  相似文献   

11.
木质素在超临界水中气化制氢的实验研究   总被引:1,自引:0,他引:1  
以木质素为原料,利用连续管流反应器,首先在反应压力为15.0~27.5MPa、反应器壁温为500~650℃、物料流速为4.7~7.5mL/min的条件下,对质量浓度为1%~3%的木质素在超临界水中进行了气化制氢的实验研究。针对实验中存在的问题,改造了反应器,着重考查壁面温度为700~775℃下高浓度木质素的气化效果。实验表明升高壁温能够极大提高木质素在超临界水中的气化效果,700℃以上木质素可以高效气化;升高压力有利于氢气质量产率的提高,并可促进甲烷化反应;而高浓度不利于木质素气化;降低流速,有利于提高氢气质量产率,但对气态产物中各组分气体的体积百分含量影响不大;相同条件下,木质素较纤维素更难气化,气化率较低。  相似文献   

12.
研究了水解木质素在高压釜中的间歇催化液化。通过分析产物的分布、碳氢含量和碳基的转化率及收率,证明氢氧化钠是水解木质素在超临界乙醇溶液中液化的高效催化剂,当氢氧化钠催化剂含量为0.06g/mL时,原料碳基转化率可高达93.53%,总油分碳基收率则高达94.96%。同时,实验表明氢氧化钠催化剂的催化效果要优于氢氧化钠/硫化钠复合催化剂的催化液化效果,硫化钠的加入无助于水解木质素在超临界乙醇溶液中的液化。结果的分析显示水解木质素在超临界乙醇溶液中的液化过程非常复杂,包括水解木质素单元的降解反应脱氧反应和木质素单元的支链脱落等过程。  相似文献   

13.
玉米芯在超临界水中气化制氢实验研究   总被引:10,自引:0,他引:10  
以玉米芯为原料,羧甲基纤维素纳(CMC)为添加剂,利用连续管流反应器,在反应压力为22.5MPa~27.5MPa、反应器壁温为550℃~650℃、反应停留时间为0.33min~0.67min、物料浓度为3wt%~6wt%的条件下,对玉米芯超临界水气化制氢进行了实验研究。利用正交实验设计与分析方法,得到实验条件范围内玉米芯超临界水气化制氢的最佳反应参数,同时对气化过程主要操作参数的影响进行了分析。实验表明温度对气化影响最大,高温度有利于产氢,气化制氢的最佳压力为25MPa,反应停留时间越长气化越完全,低浓度生物质比高浓度生物质更容易气化。  相似文献   

14.
以生物质模型化合物葡萄糖为原料,在温度500~600℃,压力23~37胁范围内,利用新研制的超临界水流化床系统对其气化制氧特性进行研究,讨论了过程主要参数温度、压力、物料浓度以及催化剂添加对气化制氢的影响.实验结果表明:温度对气化影响最大,而压力对气化的影响较小,升高温度和压力都有利于产氢.随着物料浓度增加葡萄糖气化效果下降,在超临界水流化床气化制氢系统中实现30%葡萄糖的连续稳定气化.K_2CO_3提高气化率同时降低了产气中CO含量,ZnCl_2的加入虽对气化率影响不大,但大大提高了氢气的选择性.该文的实验研究验证了超临界水流化床气化制氢系统的有效性.  相似文献   

15.
关宇  郭烈锦  裴爱霞 《太阳能学报》2007,28(10):1140-1145
在间歇式高压反应釜中,以碱性化合物K_2CO_3和Ca(OH)_2以及Ru/C为催化剂,对木质素在超临界水中的气化制氢特性进行了实验研究。结果表明:3种催化剂都有较好的催化作用,其中Ru/C的效果最佳,几种催化剂混合使用的效果要比单独一种催化剂使用时好,但是其提高的幅度不很明显。另外,随着温度的升高,H_2和CH_4的产气量以及氢转化率等都相应的升高。  相似文献   

16.
研究了反应时间、液固比和反应气氛对水解木质素超临界降解液化的影响。通过分析产物的分布、碳氢含量和碳基的转化率及收率,表明在超临界乙醇溶液中,水解木质素在10min内就能被降解液化,反应时间的延长会导致缩合反应的加剧;液固比以10:1为宜,液固比的降低容易导致水解木质素降解不完全,而更高的液固比虽可使油分的总收率略微提高,但是溶剂用量增加,同时结果表明这是由于溶剂与木质素降解产物的反应所致。无论是在惰性气氛还是在氢气气氛下,在超临界乙醇溶剂中催化液化的结果基本一致,氢气气氛的存在无助于木质素的降解,只在一定程度上由于氢气的解理而使缩合反应有所减少。  相似文献   

17.
用超临界流体(SCF)技术进行竹子热解,获取生物燃油。研究了竹子在超临界甲醇中的热解工艺参数与技术条件,并运用气质联用仪(GC-MS)分析了生物油产物的组分与含量。结果表明,270~280℃为竹子在超临界甲醇中热解的适宜温度,其液化率达34.3%。催化剂K_2CO_3对竹子热解具有促进作用,在同等条件下液化率达46.3%。通过GC-MS分析,热解产物中主要含C_(10)以下的醇类、酯类、酮类和醚类,适合作为点燃式内燃机的燃料。  相似文献   

18.
以猪体为原料,以高位热值、C元素回收率、N元素残留率作为生物油质量指标,采用响应面法研究反应温度(220~300 ℃)、反应时间(40~80 min)、固含量(10%~30%)对猪体水热转化生物油产率与质量的影响。研究结果表明:反应条件均会影响水热反应的进行且温度影响最显著,分别在不同反应条件下得到单一指标最优的生物油;生物油的最大产率为76.94%(278 ℃、64 min、29%固含量),最大HHV值为38.63 MJ/kg(290 ℃、47 min、30%固含量),最大C元素回收率为93.16%(260 ℃、60 min、10%固含量),最低N元素残留率为15.52%(220 ℃、40 min、12%固含量)。生物油的元素分析结果表明水热液化可有效降低生物油中N、O元素含量,提高生物油品质。傅里叶变换红外光谱分析与热重分析结果表明,生物油的化学成分复杂且以分子量较大、碳链较长的有机物为主。  相似文献   

19.
搭建了一套连续式多碟太阳能聚热与生物质超临界水气化耦合制氢系统,以生物质模型化合物(乙二醇、丙三醇、葡萄糖)为原料在该装置上进行了气化制氢实验,研究了太阳能直接辐照度(DNI)、物料成分、物料浓度、停留时间对气化效果的影响。实验结果表明:太阳能直接辐照度对太阳能吸收器腔内及反应器壁温的影响较大,进而能影响气化效果,在实验流量、压力范围内当DNI为363~656W/m2时,反应器出口流体温度达520~676℃,可以满足生物质超临界水气化制氢的温度及能量需要。0.1mol/L葡萄糖气化H2体积分数均值超过50%,H2产量为27.2mol/kg,气化率达109.7%。低物料浓度和长停留时间有利于气化效果的提高。实验验证了利用可再生的太阳能聚焦供热耦合生物质超临界水气化制氢是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号