共查询到20条相似文献,搜索用时 16 毫秒
1.
对一种新型热声制冷系统—双作用行波热声制冷机进行了研究,设计了一台在气液双作用行波热声发动机上使用的行波制冷机,并通过数值模拟优化了制冷机的结构尺寸。在环境温度300K,制冷温度250K的条件下,新型的双作用制冷机的COP达到了2.74,相对卡诺效率接近60%,声功消耗为534W,制冷量为1464.9W。通过对传统的斯特林制冷机及不同结构的行波制冷机计算比较。结果表明:从压比、效率、制冷量等多角度考察,新型的双作用行波制冷机更适合与气液双作用行波热声发动机耦合工作。它具有潜在的高效率、热驱动及无运动部件的优点,非常有潜力成为常规制冷方式的一种替代技术。 相似文献
2.
提出了一种热声驱动的气-液双作用行波热声制冷机,对其性能进行了数值模拟分析.计算结果表明,在平均工作压力3.0 MPa,发动机定壁温加热温度440℃工况下,系统谐振频率为12.76 Hz,在-20℃制冷温度以及环境温度为27℃的情况下获得0.708 kW制冷量,整机的制冷系数(制冷量除以加热量)为0.512.在350℃、440℃以及550℃定壁温加热下,系统能够达到的最低制冷温度分别为-62.3℃、-68.3℃以及-70.8℃.系统整机相对卡诺效率在制冷温度变化范围内存在最大值.较低的发动机加热温度更有利于系统的热声转换,当发动机加热温度为350℃时,系统在-45℃制冷温度下达到25.30%最大相对卡诺效率. 相似文献
3.
4.
5.
6.
7.
在环境温度低于0℃时,常规空气源热泵会出现压比过高、效率和制冷量急剧下降等问题。为了解决这些问题,提出了电驱动双作用行波热声热泵技术。通过数值计算优化了该新型热泵的结构尺寸,设计出一台电驱动低温环境下运行的双作用行波热声热泵。在环境温度253 K(-20℃),泵热温度323 K(50℃)的条件下,新型热泵的制热系数达到了2.93,相对卡诺效率接近64%,泵热量为4 722.6W,压比仅为1.19。热泵多种运行工况的计算结果表明该热泵能够在效率变化较小的情况下调节泵热量的大小;环境温度和泵热温度的改变对系统的运行状态影响不大;该系统制冷时亦有不俗的表现。双作用行波热声热泵在低环境温度情况下的这些优点使其非常有潜力成为高端热泵技术。 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.