首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
The distribution of the neuromedin K receptor (NK3; NKR) in the central nervous system was investigated in the adult rat by using in situ hybridization and immunohistochemical techniques. The rabbit anti-NKR antibody was raised against a bacterial fusion protein containing a C-terminal portion of NKR and affinity purified with a Sepharose 4B column conjugated to the fusion protein. Immunoblot analysis was performed to test the reactivity and specificity of the antibody. Crude membrane was prepared from cDNA-transfected Chinese hamster ovary (CHO) cells expressing each of the rat NKR, substance P receptor (NK1; SPR), and substance K receptor (NK2; SKR) and from the hypothalamus, cerebral cortex, and cerebellum. Immunoreactive bands were observed specifically in the NKR-CHO cells, hypothalamus, and cerebral cortex but not in the SPR- or SKR-CHO cells, nor in the cerebellum. Molecular weights of the immunoreactive bands ranged from 73 to 89 kDa and from 59 to 83 kDa in the NKR-CHO cells and tissues, respectively. The distribution of NKR-like immunoreactivity coincided with that of NKR mRNA. The expression of NKR was indicated on neuronal cell bodies and dendrites. NKR was found to be expressed intensely or moderately in neurons in the glomerular and granule cell layers of the main olfactory bulb; glomerular and mitral cell layers of the accessory olfactory bulb; layers IV and V of the cerebral neocortex; medial septal nucleus; nucleus of the diagonal band; bed nucleus of the stria terminalis; globus pallidus; ventral pallidum; paraventricular nucleus; supraoptic nucleus; zona incerta; dorsal, lateral, and posterior hypothalamic areas; amygdaloid nuclei; medial habenular nucleus; ventral tegmental area; midbrain periaqueductal gray; interpeduncular nuclei; substantia nigra pars compacta; linear, median, dorsal, and pontine raphe nuclei; posteromedial tegmental nucleus; sphenoid nucleus; nucleus of the solitary tract; intermediate and rostroventrolateral reticular nuclei; and lamina II of the caudal spinal trigeminal nucleus and spinal dorsal horn. These findings are discussed in relation to the physiological functions associated with neuromedin K.  相似文献   

2.
The distribution of a metabotropic glutamate receptor mGluR2 in the central nervous system was immunohistochemically examined in the rat and mouse with a monoclonal antibody raised against an N-terminal sequence of rat mGluR2 (amino acid residues 87-134). Neuronal cell bodies with mGluR2-like immunoreactivity (mGluR2-LI) were clearly shown in the horizontal cells of Cajal in the cerebral cortex, neurons in the triangular septal nucleus and medial mammillary nucleus, Golgi cells and the unipolar brush cells in the cerebellar cortex, and Golgi-like and unipolar brush-like cells in the cochlear nucleus. Neuropil was intensely immunostained in the accessory olfactory bulb, bed nucleus of the accessory olfactory tract, neocortex, cingulate cortex, retrosplenial cortex, subicular and entorhinal cortices, stratum lacunosum-moleculare of CA1 and CA3, molecular layer of the dentate gyrus, periamygdaloid cortex, basolateral amygdaloid nucleus, bed nucleus of the anterior commissure, caudate-putamen, accumbens nucleus, thalamic reticular nucleus, anteroventral and paraventricular thalamic nuclei, granular layer of the cerebellar cortex, anterior and ventral tegmental nuclei, granular layer of the cochlear nucleus, and parvicellular part of the lateral reticular nucleus. Many axons in the white matter and fiber bundles were also immunostained. No glial cells with mGluR2-LI were found. No particular species differences were found in the distribution pattern of mGluR2-LI between the rat and mouse. The results indicate that mGluR2 is expressed not only in somato-dendritic domain, but also in axonal domain of excitatory and inhibitory neurons.  相似文献   

3.
Serotonin2 receptors have been implicated in a variety of behavioral and physiological processes, as well as a number of neuropsychiatric disorders. To specify the brain regions and specific cell types possessing serotonin2 receptors, we conducted an immunocytochemical study of the rat brain using a polyclonal serotonin2 receptor antibody. Perfusion-fixed rat brain sections were processed for immunocytochemistry and reactivity was visualized using an immunoperoxidase reaction. Numerous small, round neurons were heavily labeled in the granular and periglomerular regions of the olfactory bulb. Heavy labeling of medium-sized multipolar and bipolar neurons was also seen in olfactory regions of the ventral forebrain, including the anterior olfactory nucleus and olfactory tubercle. Other regions of the basal forebrain exhibiting high levels of immunoreactivity were the nucleus accumbens, ventral pallidum, Islands of Calleja, fundus striatum and endopyriform nucleus. Immunoreactive neurons were also seen in the lateral amygdala. A dense band of small, round cells was stained in layer 2 of pyriform cortex. In neocortex, a very sparse and even distribution of bipolar and multipolar neurons was seen throughout layers II-VI. A much more faintly labeled population of oval cells was observed in the deep layer of retrosplenial and posterior cingulate cortex, and in the granular layer of somatosensory frontoparietal cortex. A moderate number of medium bipolar and multipolar cells were scattered throughout the neostriatum, and a moderate number of pyramidal and pyramidal-like cells were seen in the CA fields of the hippocampus. Diencephalic areas showing immunolabeling included the medial habenula and anterior pretectal nucleus, with less labeling in the ventral lateral geniculate. In the hindbrain, two dense populations of large multipolar cells were heavily labeled in the pedunculopontine and laterodorsal tegmental nuclei, with lesser labeling in the periaqueductal gray, superior colliculus, spinal trigeminal nucleus and nucleus of the solitary tract. Based on the distribution, localization and morphology of immunoreactive neurons in these regions, we hypothesize that subpopulations of serotonin2 containing cells may be GABAergic interneurons or cholinergic neurons. Further, the observed distribution suggests that the physiological effects of serotonin acting through serotonin2 receptors are mediated by a relatively small number of cells in the brain. These observations may have strong functional implications for the pharmacological treatment of certain neuropsychiatric disorders.  相似文献   

4.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfated proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfated proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemistry, revealed consistent overlapping of their distribution patterns.  相似文献   

5.
The distribution of 5-HT2A receptor immunoreactivity in the brain stem was studied by means of a commercial 5-HT2A mouse monoclonal antibody against the N-terminal portion of the receptor (amino acids 1-72). The 5-HT2A immunoreactivity demonstrated in the nerve terminal or dendritic-like structures of regions of the nucleus raphe pallidus, nucleus interfascicularis, motor nucleus of the trigeminal nerve, the ventral and dorsal tegmental nuclei and the median eminence by means of double immunofluorescence procedures were shown to be associated with 5-HT immunoreactive cell body-dendritic and/or nerve terminal structures. Besides synaptic transmission the relationships are compatible with the existence of short distance volume transmission (in the microm range) in 5-HT2A mediated 5-HT communication through terminal (5-HT)-terminal (5-HT2A) or soma/dendro (5-HT)-terminal (5-HT2A) and terminal (5-HT)-dendritic (5-HT2A) interactions in discrete brain stem nuclei.  相似文献   

6.
Serotonin (5-HT) projections from the ascending raphe nuclei reach the dorsal hippocampus via the cingulum bundle (CB) and fimbria-fornix (FF). Microinjection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the CB and FF produces a significant decrease in the density of 5-HT immunoreactive fibers in the hippocampus as early as 3 days postlesion (Zhou, F.C. and Azmitia, E.C. (1983) Brain Res. Bull., 373, 337-348). In the present study we used an anti-peptide antibody against the second extracellular loop of the 5-HT1A receptor and employed immunocytochemistry to examine changes in the expression and distribution of the 5-HT1A receptor in the hippocampus 14 days following administration of 5,7-DHT into the CB and FF. The density of 5-HT immunoreactive fibers was greatly reduced 14 days following the lesions. 5-HT1A immunoreactivity (IR) was localized to the proximal axon near the axon hillock of cells in the pyramidal cell layer of the cornu Ammonus and in the granule cell layer of the dentate gyrus. The intensity of 5-HT1A-IR was increased in the CA1 and dentate gyrus following 5,7-DHT lesions. Intensity in the CA3 also increased but not to a significant level. These findings demonstrate that 5-HT denervation in the hippocampus is followed by increased expression of the 5-HT1A receptor protein. These changes in receptor expression 14 days postlesion may represent adaptive changes by postsynaptic cells following reduced 5-HT innervation and may be the molecular basis for 5-HT1A receptor supersensitivity.  相似文献   

7.
These experiments addressed the role of 5-HT? receptors in conditioned olfactory learning. Ritanserin, a 5-HT2A/2C antagonist, was injected subcutaneously into postnatal day (PND) 7 pups before or after conditioned olfactory training to a peppermint odor. When the pups were tested for olfactory preference on PND 8, those injected with ritanserin before training failed to acquire an odor preference whereas those injected after training learned. This suggested that the 5-HT? receptor is required only in the acquisition of conditioned olfactory learning. Injection of ritanserin directly into the olfactory bulb before training also blocked preference for the peppermint odor. In pups that had depletion of the 5-HT input to the bulb, subcutaneous (sc) injection of a 5-HT2A/2C agonist was sufficient to maintain conditioned olfactory learning, confirming the importance of 5-HT in learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
A highly specific anti-glutamate monoclonal antibody, mAb2D7, was used together with light and electron microscopy to elucidate the role played by the amino acid glutamate in the projection from the olfactory bulb to the piriform cortex in the rat. By light microscopy, glutamate-like immunoreactivity was observed in neuronal cell bodies and in the neuropil of the piriform cortex. Double labelling experiments which involved injections of wheat germ agglutinin-horse--radish peroxidase into the olfactory bulb and a post-embedding immunogold method for electron microscopy revealed anterogradely labelled terminals making asymmetric synaptic contacts on dendrites in the piriform cortex which contained high levels of glutamate as assessed by quantification. These results further support a role for glutamate as a neurotransmitter in the efferent pathway of the rat olfactory bulb.  相似文献   

9.
The present study was aimed at comparing the effects of serotonin (5-HT) synthesis blockade using chronic administration of p-chlorophenylalanine (PCPA) and 5,7-dihydroxytryptamine injections of variable volume (3 vs. 6 microl) on the density of NPY immunoreactive (Ir) neurons and binding of [3H]8-OH-DPAT, S-CM-G[125I]TNH2 and [125I]DOI to 5-HT1A, 5-HT1B/1D, and 5-HT2A/2C receptors in rat cortical regions. Three weeks after large but partial (89% depletion in 5-HT tissue concentration) lesions of 5-HT neurons no changes in neither NPY immunoreactivity nor 5-HT receptor binding were detected. The complete 5,7-DHT lesions produced increases in the number of NPY-Ir neurons in the upper regions of the cingular (134%), frontal (140%) and parietal cortex (48%) and corresponding decreases in 5-HT2A/2C binding (16-26%). No changes in 5-HT1A and 5-HT1B/1D binding were observed after lesions of this kind. After PCPA treatment, decreases in NPY-Ir neurons density (22-40%) and increases in 5-HT1A and 5-HT1B/1D receptor binding sites (20-50%) were distributed in both upper and deeper cortical regions. The lack of effect of the partial lesion suggests that spared 5-HT neurons may exert compensatory mechanisms up to a large extent. The changes in NPY immunoreactivity and 5-HT2A/2C binding detected in the upper regions of the cortex after complete 5-HT lesions probably result from local cellular rearrangements, whereas blocking 5-HT synthesis has more widespread influence on NPY neurons and on 5-HT1A and 5-HT1B/1D receptor subtypes. Moreover, decreases in DOPAC concentrations detected only after complete lesions suggest that the involvement of catecholaminergic transmission may also differentiate 5,7-DHT and PCPA treatments. Altogether, these data suggest that different receptor subtypes might be involved in 5-HT-NPY relationships.  相似文献   

10.
By intracellular and whole cell recording in rat brain slices, it was found that bath-applied serotonin (5-HT) produces an increase in the frequency and amplitude of spontaneous excitatory postsynaptic potentials/currents (EPSPs/EPSCs) in layer V pyramidal cells of neocortex and transitional cortex (e.g. medial prefrontal, cigulate and frontoparietal). The EPSCs were suppressed by LY293558, an antagonist selective for the AMPA subtype of excitatory amino acid receptor, and by two selective 5-HT2A receptor antagonists, MDL 100907 and SR 46349B. In addition, the EPSCs were suppressed by the fast sodium channel blocker tetrodotoxin (TTX) and were dependent upon external calcium. However, despite being TTX-sensitive and calcium dependent, there was no evidence that the EPSPs resulted from an increase in impulse flow in excitatory neuronal afferents to layer V pyramidal cells. The EPSCs could be induced rapidly by the microiontophoresis of 5-HT directly to "hot spots" within the apical (but not basilar) dendritic field of recorded neurons, indicating that excitatory amino acids may be released by a TTX-sensitive focal action of 5-HT on a subset of glutamatergic terminals in this region. Consistent with such a presynaptic action, the inhibitory metabotropic glutamate receptor agonist (1S,3S)-aminocyclopentane-1,3-dicarboxylate markedly reduced the induction of EPSPs by 5-HT. Postsynaptically, 5-HT enhanced a subthreshold TTX-sensitive sodium current, potentially contributing to an amplification of EPSC amplitudes. These data suggest 5-HT. via 5-HT2A receptors, enhances spontaneous EPSPs/EPSCs in neocortical layer V pyramidal cells through a TTX-sensitive focal action in the apical dendritic field which may involve both pre- and postsynaptic mechanisms.  相似文献   

11.
Biological actions of somatostatin are exerted via a family of receptors, for which five genes recently have been cloned. However, none of these receptor proteins has been visualized yet in the brain. In the present-study, the regional and cellular distribution of the somatostatin sst2A receptor was investigated via immunocytochemistry in the rat central nervous system by using an antibody generated against a unique sequence of the receptor protein. Specificity of the antiserum was demonstrated by immunoblot and immunocytochemistry on rat brain membranes and/or on cells transfected with cDNA encoding the different sst receptor subtypes. In rat brain sections, sst2A receptor immunoreactivity was concentrated either in perikarya and dendrites or in axon terminals distributed throughout the neuropil. Somatodendritic labeling was most prominent in the olfactory tubercle, layers II-III of the cerebral cortex, nucleus accumbens, pyramidal cells of CA1-CA2 subfields of the hippocampus, central and cortical amygdaloid nuclei, and locus coeruleus. Labeled terminals were detected mainly in the endopiriform nucleus, deep layers of the cortex, claustrum, substantia innominata, subiculum, basolateral amygdala, medial habenula, and periaqueductal gray. Electron microscopy confirmed the association of sst2A receptors with perikarya and dendrites in the former regions and with axon terminals in the latter. These results provide the first characterization of the cellular distribution of a somatostatin receptor in mammalian brain. The widespread distribution of the sst2A receptor in cerebral cortex and limbic structures suggests that it is involved in the transduction of both pre- and postsynaptic effects of somatostatin on cognition, learning, and memory.  相似文献   

12.
Nerve growth factor signal transduction mediated through the trk receptor has been implicated in neuronal growth, differentiation, and survival. In this study, we examined the effects of gestational exposure to the developmental neurotoxicant methylmercury (CH3Hg) on the ontogeny of trk-immunoreactivity (IR). Long-Evans dams were dosed on gestational days 6-15 (p.o.) with 0, 1, or 2 mg/kg CH3Hg dissolved in saline. Pups were sacrificed and perfused with buffered paraformaldehyde on postnatal days (PND) 1, 4, 10, 21 and 85. The brains were sectioned sagitally, Nissl-stained or stained immunohistochemically for trk receptors or glial fibrillary acidic protein (GFAP), and examined throughout the medial to lateral extent of the brain. The greatest density of IR in neural cell bodies was seen in the olfactory bulb, hippocampus, cerebral, and cerebellar cortex, striatum, septum, nucleus basalis, inferior colliculus, pons, and brain stem nuclei. trk IR was not limited to nerve cell bodies, with prominent axonal and dendritic staining in the brainstem, neocortex, hippocampus, cerebellum, and olfactory tract. The regional pattern of trk IR varied in an age-dependent manner. In controls, trk-like IR appeared to peak in most regions between PND4-10 and decreased dramatically after PND21. This age-related difference in trk IR was supported by western blot analysis of PND10 and adult neocortex. This reduced and more adult-like pattern of trk IR was apparent on PND21 with some persistent trk-like IR in the olfactory bulb, hippocampus, neocortex, cerebellum and basal forebrain. In contrast to the normal regional patterns of trk IR, CH3Hg produced a dose-related decrease in trk-like IR in the absence of overt maternal toxicity or neonatal toxicity. CH3Hg-induced decreases in trk-like IR were especially apparent during the early postnatal period when trk IR was the greatest. The effects of CH3Hg exposure were restricted regionally, with the largest decrease in trk-like IR apparent in cortical regions, basal forebrain nuclei, and brain stem nuclei. Subsequent to the effects of CH3Hg on cortical trk-like IR were alterations in the development of cortical laminae on PND10 and 21 of neocortex. These alterations were characterized by quantifiable decreases in cell density, cell size and the widths of the layers of posterior neocortex. Not all of the CH3Hg-induced effects were characterized by decreased trk-like IR. Robust increases in trk IR in glial cells in the corpus callosum and brain stem were observed coincident with increased GFAP IR in cells of similar morphology. The present results localize the cellular and regional ontogeny of trk and suggest that developmental exposure to CH3Hg alters the normal ontogeny of this trophic factor receptor which may be associated with the developmental neurotoxicity of this chemical.  相似文献   

13.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose-response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

14.
To demonstrate the regional, cellular and subcellular distributions of non-N-methyl-D-aspartate glutamate receptors in rat brain, we generated antipeptide antibodies that recognize the C-terminal domains of individual subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-preferring glutamate receptors (i.e. GluR1, GluR4, and a region highly conserved in GluR2, GluR3 and GluR4c). On immunoblots, antibodies detect distinct proteins with mol. wts ranging from 102,000 to 108,000 in homogenates of rat brain. Immunocytochemistry shows that glutamate receptor subunits are distributed abundantly and differentially within neuronal cell bodies and processes in cerebral cortex, basal ganglia, limbic system, thalamus, cerebellum and brainstem. The precise patterns and cellular localizations of glutamate receptor subunit immunoreactivities are unique for each antibody. In neocortex and hippocampus, pyramidal neurons express GluR1 and GluR2/3/4c immunoreactivities; many non-pyramidal, calcium-binding, protein-enriched neurons in cerebral cortex are selectively immunoreactive for GluR1. In striatum, the cellular localizations of GluR1, GluR2/3/4c and GluR4 immunoreactivities are different; in this region, GluR1 co-localizes with many cholinergic neurons but is only present in a minor proportion of nicotinamide adenine dinucleotide phosphate diaphorase-positive striatal neurons. GluR1 co-localizes with most dopaminergic neurons within the substantia nigra. In several brain regions, astrocytes show GluR4 immunoreactivity. Within the cerebellar cortex, cell bodies and processes of Bergmann glia express intense GluR4 and GluR1 immunoreactivities; perikarya and dendrites of Purkinje cells show GluR2/3/4c immunoreactivity but no evidence of GluR1 or GluR4. Ultrastructurally, GluR subunit immunoreactivities are localized within cell bodies, dendrites and dendritic spines of specific subsets of neurons and, in the case of GluR1 and GluR4, in some populations of astrocytes. This investigation demonstrates that individual AMPA-preferring glutamate receptor subunits are distributed differentially in the brain and suggests that specific neurons and glial cells selectively express glutamate receptors composed of different subunit combinations. Thus, the co-expression of all AMPA receptor subunits within individual cells may not be obligatory for the functions of this glutamate receptor in vivo.  相似文献   

15.
A novel member of the opioid receptor family (ORL-1) has been cloned from a variety of vertebrates. ORL-1 does not bind any of the classical opioids, although a high affinity endogenous agonist with close homology to dynorphin has recently been identified. We have generated a monoclonal antibody to the N-terminus of ORL-1 to map areas of receptor expression in rat central nervous system (CNS). Intense and specific immunolabeling was observed in multiple areas in the diencephalon, mesencephalon, pons/medulla, and spinal cord. In the telencephalon, intense labeling was observed in the neuropil throughout layers II-V in the neocortex, the anterior olfactory nuclear complex, the pyriform cortex, the CA1-CA4 fields and dentate gyrus of the hippocampus, and in many of the septal and basal forebrain areas. In contrast to other members of the opioid receptor family, light labeling for ORL-1 was observed in telencephalic areas such as caudate-putamen. In the cerebellum, ORL-1 immunoreactivity was only observed in the deep nuclei. Throughout the CNS the majority of labelling was localized to fiber processes and fine puncta, although labeled scattered perikarya were observed in a few brain areas such as the hilus dentate in the hippocampus and some nuclei in the brainstem and spinal cord. The present mapping study is consistent with the reported distribution of ORL-1 mRNA and provides the first immunohistochemical report on anatomical and cellular distribution of ORL-1 receptor in the rat CNS.  相似文献   

16.
17.
A newly described synaptic action of serotonin (5-HT) in the cerebral cortex is reviewed, and implications for mood and psychosis are discussed. Recordings in brain slices show that 5-HT induces a rapid increase in excitatory postsynaptic potentials/currents (EPSPs/EPSCs) in virtually all layer V pyramidal cells of neocortex. This effect is mediated by the 5-HT2A receptor, which has been linked to the action of hallucinogenic and atypical antipsychotic drugs. The increase in EPSCs is seen most prominently in medial prefrontal cortex and other frontal regions where 5-HT2A receptors are enriched. The induction of EPSCs by 5-HT appears to occur through a novel mechanism that does not depend on the activation of afferent impulse flow. Instead, 5-HT appears to act presynaptically, directly or indirectly, to induce a focal release of glutamate from a subpopulation of glutamatergic terminals impinging upon the apical (but not basilar) dendrites of layer V pyramidal cells; a working hypothesis of the transduction pathway (involving asynchronous transmitter release) for this process is presented. Consistent with a focal action upon glutamatergic nerve terminals, the 5-HT-induced EPSPs can be suppressed by presynaptic inhibitory modulators such as mu-opiate or group II/III metabotropic agonists. We suggest that the suppression of 5-HT-induced EPSCs by 5-HT2A antagonists and mu-opiate agonists may underlie certain shared clinical effects of 5-HT2A antagonists and mu-opiate agonists. We suggest further that since presynaptic group II/III metabotropic glutamate agonists suppress 5-HT-induced EPSCs, metabotropic glutamate agonists may also possess antidepressant and/or antipsychotic properties.  相似文献   

18.
We produced and characterized two monoclonal antibodies, termed 1.9.E and 4.11.C, that specifically recognize olfactory bulb ensheathing glia. Both antibodies were generated using the olfactory nerve layer (ONL) of newborn rat olfactory bulbs (P0, P1) as immunogens. The specificity of these antibodies was tested by immunofluorescence techniques on tissue sections and cultures of adult and neonatal rat olfactory bulbs, and by Western blot analysis. 1.9.E labeled the ONL and glomerular layer of the olfactory bulb (OB) of adult rats. In newborn rats, 1.9.E immunostained ensheathing cells from the ONL and peripheral olfactory fascicles. Furthermore, 1.9.E reacted with some processes of the radial glia in the periventricular germinal layer of the newborn rat. Although 4.11.C also specifically labeled ensheathing cells in the adult OB, it did not stain any cell type in the ONL of newborn rats. The lack of double labeling with either 1.9.E or 4.11.C and anti-olfactory marker protein (OMP) antibody, a specific marker for olfactory axons, indicated that none of the monoclonals recognized olfactory axons. Double immunostaining of adult OB cultures with 1.9.E or 4.11.C and anti-p75-nerve growth factor receptor revealed that both antibodies specifically recognized ensheathing glia in those cultures. Filaments were strongly labeled throughout the entire cytoplasm of ensheathing cells, suggesting that 1.9.E and 4.11.C immunoreacted with ensheathing glia cytoskeleton. 4.11.C stained a few Schwann cells in adult sciatic nerve sections. Moreover, 4.11.C immunostained cortical astrocyte cultures from newborn rats (P1). In Western blot analysis both antibodies recognized a major component, migrating with an apparent molecular weight of 60 kDa, from olfactory nerve and glomerular layer (ONGL) extracts of adult and neonatal rats. The pattern of immunoreactivity of 1.9.E and 4.11.C antibodies suggest that both antibodies are specific markers for olfactory ensheathing glia in the adult rat central nervous system (CNS).  相似文献   

19.
NMDA receptors play key roles in synaptic plasticity and neuronal development, and may be involved in learning, memory, and compensation following injury. A polyclonal antibody that recognizes four of seven splice variants of NMDAR1 was made using a C-terminus peptide (30 amino acid residues). NMDAR1 is the major NMDA receptor subunit, found in most or all NMDA receptor complexes. On immunoblots, this antibody labeled a single major band migrating at M(r) = 120,000. The antibody did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained vibratome sections of rat tissue showed labeling in many neurons in most structures in the brain, as well as in the cervical spinal cord, dorsal root and vestibular ganglia, and in pineal and pituitary glands. Staining was moderate to dense in the olfactory bulb, neocortex, striatum, some thalamic and hypothalamic nuclei, the colliculi, and many reticular, sensory, and motor neurons of the brainstem and spinal cord. The densest stained cells included the pyramidal and hilar neurons of the CA3 region of the hippocampus, Purkinje cells of the cerebellum, supraoptic and magnocellular paraventricular neurons of the hypothalamus, inferior olive, red nucleus, lateral reticular nucleus, peripheral dorsal cochlear nucleus, and motor nuclei of the lower brainstem and spinal cord. Ultrastructural localization of immunostaining was examined in the hippocampus, cerebral cortex, and cerebellar cortex. The major staining was in postsynaptic densities apposed by unstained presynaptic terminals with round or mainly round vesicles, and in associated dendrites. The pattern of staining matched that of previous in situ hybridization but differed somewhat from that of binding studies, implying that multiple types of NMDA receptors exist. Comparison with previous studies of localization of other glutamate receptor types revealed that NMDAR1 may colocalize with these other types in many neurons throughout the nervous system.  相似文献   

20.
5-Hydroxytryptamine1A (5-HT1A) receptors have been visualized at the electron microscopic level in selected areas (dorsal raphe nucleus, hippocampus, septum) of the rat brain using specific anti-peptide antibodies. 5-HT1A receptor immunoreactivity was found almost exclusively in the somatodendritic compartment of neurons and was very rarely observed within processes possibly belonging to glial cells. The immunoenzymatic reaction product was associated exclusively with dendritic spines in the dorsal hippocampus, whereas in the dorsal raphe nucleus and the septal complex, immunoreactivity was found in both dendritic processes and somata. Although some immunolabeling was observed within the cytoplasm of cell bodies, 5-HT1A receptor immunoreactivity was essentially confined to the plasma membrane where it was unevenly distributed. It was frequently associated with synapses (except in the dorsal raphe nucleus), but was also found extrasynaptically in both somata and dendrites. These data suggest that the action of serotonin via 5-HT1A receptor could occur through junctional as well as nonjunctional transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号