首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
通过球磨混粉+半固态烧结法成功制备出质量分数为0.5%的石墨烯/7075铝基复合材料,通过扫描电子显微镜、能谱分析仪和室温拉伸力学性能测试等手段,对石墨烯/7075铝基复合材料的显微组织及力学性能进行了研究。结果表明:复合材料中的石墨烯纳米片均匀的分散在7075铝合金基体中,相比于未添加石墨烯的7075铝合金基体,复合材料的密度有所下降,维式硬度和抗拉强度则分别提高了14%和32%,延伸率无明显变化。  相似文献   

2.
水丽  张凯  于宏 《工程科学学报》2019,41(9):1162-1167
低温球磨分散结合真空热压烧结工艺制备了石墨烯增强的Al-15Si-4Cu-Mg基复合材料.采用扫描电镜、X射线衍射、能谱分析和透射电镜表征了复合材料微观结构,通过抗拉强度和硬度测试,研究了石墨烯添加量对石墨烯/Al-15Si-4Cu-Mg复合材料微观组织和力学性能的影响.结果表明:当石墨烯质量分数分别为0.4%和0.8%,石墨烯沿基体晶界均匀分布,钉扎晶界,石墨烯与Al-15Si-4Cu-Mg基体界面结合良好,初晶β-Si、Mg2Si和Al2Cu相弥散分布于基体中.当石墨烯质量分数上升至1%,石墨烯分散困难,过量石墨烯富集于晶粒边界处,诱发脆性鱼骨状Al4Cu2Mg8Si7相沿晶界析出.当石墨烯质量分数为0.8%时,石墨烯/Al-15Si-4Cu-Mg复合材料的拉伸强度和硬度分别达到321 MPa和HV 98,相比纯Al-15Si-4Cu-Mg复合材料分别提高了19.3%和46.2%;当石墨烯质量分数为0.4%时,复合材料的屈服强度高达221 MPa,硬度和塑性亦获得明显改善.   相似文献   

3.
通过改进的Hummers法制备氧化石墨烯,对氧化石墨烯进行化学镀铜处理。复合材料以纯铝为基体,镀铜氧化石墨烯为增强相。通过放电等离子烧结工艺制备不同质量分数的镀铜石墨烯铝基复合材料。通过扫描电子显微镜(scanning electron microscope, SEM),X射线衍射仪(X-ray diffractometer, XRD)等表征材料的微观组织结构,利用微拉伸试验机测试材料的力学性能。结果表明,镀铜石墨烯质量分数达到0.15%时,镀铜石墨烯铝基复合材料综合性能达到最优,维氏硬度和抗拉强度分别达到56和224 MPa,比石墨烯铝基复合材料的维氏硬度和抗拉强度分别提高6%和24%,比纯铝的维氏硬度和抗拉强度分别提高30%和103%。镀铜石墨烯铝基复合材料具有较好的减磨性。  相似文献   

4.
通常铝石墨烯复合材料会生成较多的Al4C3,使其电导率相对于纯铝下降较大。为减少Al4C3生成,采用粉体连续挤压法制备Al-Gr(石墨烯)复合材料。研究表明:采用粉体连续挤压法制备Al-Gr复合材料,Al与Gr在界面上生成的Al4C3相极少,抗拉强度提高,随着石墨烯含量的增加而增大,电导率随石墨烯含量增加而降低,但Al-0.5%Gr复合杆材电导率仍保持为62.28%IACS,相比基体纯铝仅下降2.1%,而抗拉强度提高了16.3%。  相似文献   

5.
试验采用搅拌铸造法制备了纳米碳管增强铝基复合材料,对其显微组织、硬度、抗拉强度和电阻率进行了研究.结果表明:纳米碳管的加入能够细化复合材料晶粒,表面镀铜后可以抑制基体与增强体之间的界面反应,避免脆性碳化物的生成;复合材料的硬度和抗拉强度随着纳米碳管加入量的增加先增加后减小,纳米碳管的质量分数为1.0%时,达到最大值,与基体相比分别增加了34.8%和34.4%;纳米碳管的加入对基体的导电性影响不大.  相似文献   

6.
采用粉末改性和半固态挤压工艺制备了石墨烯纳米片/Al8030复合材料, 其中石墨烯纳米片质量分数为0.5%, 研究了石墨烯纳米片对铝基复合材料显微组织和低温蠕变性能的影响。结果表明: 石墨烯纳米片主要分布于晶界处, 并且具有与挤压方向平行的定向分布特征。复合材料样品在服役条件下的稳态蠕变速率与铝合金基体相比下降超过50%。在90 ℃和50~90MPa实验条件下, 基体的蠕变机制以位错攀移机制为主, 而复合材料的蠕变则由位错滑移和位错攀移机制共同影响; 在120~150 ℃和50~90MPa实验条件下, 基体和复合材料的蠕变均由位错攀移机制和第二相增强机制协同控制, 但石墨烯纳米片的添加使得第二相增强机制对蠕变的控制更明显。  相似文献   

7.
采用葡萄糖和钛粉真空热压烧结原位合成了钛基体-石墨烯复合材料。复合材料界面结构稳定,界面处产生的石墨烯片层结构清晰,条纹间距约为0.32 nm,与石墨层片理论间距0.337 nm相近。特别值得一提的是:在1 300℃烧结条件下,复合材料屈服强度和延伸率跟相同条件制备的纯钛样品相比都在增加。其原因可能是原位合成的石墨烯和纳米颗粒TiC在钛基体内协调变形,为缓和复合材料的强塑性矛盾提供很好的解决思路。  相似文献   

8.
采用磁力搅拌与放电等离子烧结技术制备了碳纳米管(CNT)增强铝基复合材料.对试样进行了扫描电镜和透射电镜表征,测试了试样的力学性能、摩擦性能、电学性能和热学性能.当碳纳米管在试样中的质量分数为1%时,可在铝基体中均匀分布且CNT/Al界面结合良好,此时试样的抗拉强度和硬度较纯A1分别提高了29.4%和15.8%.在获得最佳力学性能强化和最佳减磨效果的同时.试样电导率较纯Al仅降低8.0%.碳纳米管可提高基体的热导率.但强化效果不明显.  相似文献   

9.
铝基复合材料作为金属基复合材料中最重要的材料之一,在工业生产以及日常生活中有着非常广泛的应用。石墨烯由于其高导热性、高阻尼性、高弹性模量、高强度以及良好的自润滑性成为复合材料中重要的增强体。将石墨烯用作增强体增强铝基复合材料有着非常大的应用潜力。归纳了石墨烯增强铝基复合材料的研究进展;总结了影响其性能的主要因素即增强体材料种类,石墨烯在铝基体中的均匀分散性以及铝基体与石墨烯之间的界面情况;介绍了石墨烯增强铝基复合材料的两种制备方法;分析了石墨烯增强铝基复合材料的增强机制;并展望了其发展前景,以期为制备高性能石墨烯增强铝基复合材料提供参考。  相似文献   

10.
通过微波烧结法制备石墨烯(GNPs)表面镀Cu增强钛基(Ti6Al4V)复合材料,探讨石墨烯表面镀Cu后对钛基复合材料显微组织和力学性能的影响。结果表明:石墨烯表面成功镀覆一层较均匀分布的Cu颗粒;石墨烯与基体Ti界面反应严重,容易生成粒径为2~5μm的TiC,石墨烯表面镀Cu后,界面反应产生的TiC含量更多,同时生成了Ti_2Cu相;相比于单纯外加石墨烯,石墨烯表面镀Cu后,提高了复合材料的力学性能,其相对密度、显微硬度、抗压强度分别达到95.48%、468 HV_(0.1)、1 406 MPa;室温磨损机制由基体(Ti6Al4V)的磨粒磨损转变为GNPs-Cu/Ti6Al4V复合材料的黏着磨损。  相似文献   

11.
通过粉末冶金真空热压烧结法制备双尺度(纳米、微米)混杂SiC颗粒增强铝基复合材料,研究不同烧结温度和压力对复合材料的组织、密度、硬度及耐磨性的影响。试验结果表明:SiC颗粒在复合材料基体中分布均匀,基体与增强体界面结合较好。随着烧结温度和压力的增高,复合材料的致密度、硬度、耐磨性均先增大后减小,最佳烧结温度和压力分别为460℃和30 MPa,微纳米混杂颗粒增强、单一微米颗粒增强、单一纳米颗粒增强复合材料的硬度分别是76.6 HV、70.7 HV、62.75 HV,比基体分别提高52.4%、40.6%、24.8%,耐磨性分别是基体的2.22倍、1.71倍、1.42倍。  相似文献   

12.
采用放电等离子体烧结(spark plasma sintering,SPS)技术制备了含质量分数为0%、0.5%、1.0%、2.0%和5.0%的纳米SiC颗粒(SiC_p,平均粒径为40 nm)增强铝镁复合材料,通过扫描电镜(scanning electron microscope,SEM)观察铝镁复合材料微观组织形貌,并对复合材料进行了力学性能测试,研究了不同质量分数纳米SiC_p对复合材料相对密度和力学性能的影响规律,确定了制备复合材料最佳SiCp添加量。研究表明:随着纳米SiC_p质量分数的增加,复合材料的硬度逐渐增加,抗拉强度呈现先增加后降低的变化趋势,质量分数为1.0%的SiC_p增强铝镁复合材料的性能最好,相对密度和抗拉强度分别达到了98.36%和301.5 MPa。  相似文献   

13.
采用粉末冶金真空热压烧结法制备了双尺度(纳米、微米)混杂SiC颗粒增强铝基复合材料,并研究其微观组织、密度、硬度及耐磨性。结果表明,微米SiC与基体界面结合较好,分布均匀,没有明显的团聚现象;当纳米SiC质量分数为3%,微米SiC质量分数在0~20%之间时,复合材料的相对密度、硬度、耐磨性均先提高后降低;当微米SiC含量为15%,纳米SiC含量在0~4%之间变化时,复合材料的性能不断提高;微米纳米混杂颗粒增强、单一微米颗粒增强、单一纳米颗粒增强复合材料的最大硬度分别是78.9 HV、70.7 HV、65.8 HV,比基体分别提高56.86%、40.56%、30.81%,耐磨性分别是基体的2.29倍、1.39倍、1.23倍。  相似文献   

14.
通过镍的添加来改善铜与石墨烯之间较差的界面结合性能,从而提高铜基石墨烯复合材料的力学和电学性能。本实验采用放电等离子(SPS)烧结技术制备了石墨烯含量为0.2%(质量分数,下同),镍含量分别为1.0%,1.5%和2.0%的镍掺杂石墨烯/铜(G-Cu/Ni)复合材料。利用拉曼光谱(Raman)、X射线衍射(XRD)、扫描电子显微镜(SEM)等表征手段,对镍掺杂石墨烯/铜(G-Cu/Ni)复合粉末的形貌和石墨烯的结构进行了研究,揭示了不同镍含量对铜基石墨烯复合材料力电性能的影响。结果表明:随着镍含量的增加,复合材料的硬度随之增加,屈服强度先升高后降低;其电学性能随着镍含量的增加而逐渐降低。当镍含量为1.0%时,复合材料的力学和电学性能达到较好的配合:复合材料的屈服强度为320.3 MPa(相对于未添加镍的石墨烯/铜复合材料而言提高了31.08%),电导率为45.72 MS·m~(-1),其电导率百分值(IACS)高达80.21%。  相似文献   

15.
钢纤维对摩擦材料性能的影响   总被引:1,自引:0,他引:1  
树脂基复合材料性能优异,被大量用做汽车制动材料.以酚醛树脂为基体,钢纤维为增强纤维,添加填料,采用热压法制成刹车片,并进行摩擦试验.通过试验研究了酚醛树脂基复合材料中钢纤维不同添加量(质量分数)对复合材料冲击强度、摩擦性能的影响.结果表明:该配方类型中,在100~300℃温度范围内,材料冲击强度先增大后减小,钢纤维质量分数为24%时为转折点;材料的摩擦系数先增大后减小,钢纤维质量分数为26%时为转折点;磨损率随钢纤维添加量的增加而增大,钢纤维最佳添加量为24%~26%.  相似文献   

16.
纳米SiC颗粒增强2024铝基复合材料的力学性能研究   总被引:4,自引:0,他引:4  
采用粉末冶金法制备了1%(体积分数)纳米SiC颗粒增强2024铝基复合材料,并研究了其力学性能。实验结果表明,1%纳米SiC颗粒增强2024铝基复合材料具有优良的室温力学性能,并且在200℃时表现了较好的高温性能,在315℃时强度下降。研究表明,纳米SiC可以增加增强粒子的表面积,减小增强粒子的颗粒间距,使大量弥散分布的纳米SiC颗粒起到钉扎位错的作用,而且可以细化2024铝基体的晶粒,因而表现了良好的力学性能。  相似文献   

17.
石墨烯/铜铬锆基复合材料具有优良的性能,石墨烯在基体中的分布情况直接影响复合材料的物理性能和力学性能。采用放电等离子烧结(SPS)法和轧制工艺制备了不同石墨烯含量的石墨烯/铜铬锆基复合材料(GNP/CuCrZr基复合材料),研究了复合材料的显微组织形貌,并对复合材料的致密度、硬度、导电率进行了分析。根据复合材料的力学性能和拉伸断口形貌,分析了复合材料热轧前后的断裂机制。结果表明:SPS后,GNP随机分布在CuCrZr基体中,此时复合材料晶粒较粗大;热轧后复合材料发生再结晶现象,晶粒尺寸减小,GNP沿着轧制方向定向排列并均匀的分布在晶界处。热轧有效改善了GNP/CuCrZr基复合材料的致密度,且随着石墨烯含量的增加,改善效果越明显。轧制态0.25%GNP/CuCrZr基复合材料致密度达到了99.8%。轧制后复合材料的强度和塑性大幅度增加,轧制态0.25%GNP/CuCrZr基复合材料的抗拉强度为272 MPa,延伸率为34%,与烧结态的复合材料相比分别提高了3.0%和143%。烧结后复合材料断裂机制为脆性断裂,而轧制后变为韧性断裂。  相似文献   

18.
运用真空热压烧结法制备石墨烯纳米片(GNP)增强纯钛轻质结构材料。采用光学显微镜、扫描电镜和透射电镜等手段对制备得到的粉体和块状样品的微观组织结构进行了分析。对添加不同石墨烯纳米片含量的烧结样品进行了密度测试和拉伸测试。研究工作集中关注了GNPs在钛基体中的分散和GNP与钛基体的界面结合情况。结果表明,GNP与钛基体的界面分界清晰,形成Ti/TiC_x/GNP连续结构,界面处有少量TiC_x生成外,大部分GNP依然以其纳米结构存在。  相似文献   

19.
在VTi Ni钒基储氢电池中添加不同含量的石墨烯,测试和分析了显微组织、物相组成、吸放氢性能和耐腐蚀性能。结果表明:石墨烯的添加,明显提高了钒基储氢电池的吸放氢性能和耐腐蚀性能。随石墨烯含量的增加,钒基储氢电池的的腐蚀电位先正移后负移,最大吸氢量先增大后减小,吸氢量达到饱和的吸氢时间先减小后增大,放氢平台压力先基本不变后提高。石墨烯含量优选为1%,腐蚀电位较未添加石墨烯时正移了414 m V,最大吸氢量较未添加石墨烯时提高了24%,吸氢量达到饱和的吸氢时间较未添加石墨烯时缩短了44%。  相似文献   

20.
随着科技的不断发展,为满足军工、航空航天、汽车、电子工业等对铝合金的性能提出的更高的性能、功能及结构等需求,Al基复合材料具有高比强度、高比刚度、低密度、低热膨胀系数、高耐磨性,由于其优异的力学性能及良好的可加工性成为该领域的关键新型材料。实验采用粉末冶金技术制备了石墨烯质量分数为1%的石墨烯/Al基复合材料,通过扫描电镜(SEM),高分辨透射电镜(HRTEM)和拉伸试验机表征了烧结态和挤压态石墨烯/Al基复合材料的微观组织,拉伸性能和断口形貌,系统性研究了热挤压前和热挤压后Al基复合材料中石墨烯纳米片的分布状态,进而探明了热挤压工艺对石墨烯/Al基复合材料组织和性能的影响。结果表明:挤压态石墨烯/Al基复合材料的组织均匀致密,缺陷和孔洞数量明显较烧结态大幅降低。超声分散和热挤压工艺有效抑制了石墨烯与Al基体的有害界面反应。挤压态石墨烯/Al基复合材料的抗拉强度和伸长率为161.34 MPa和23.57%,较烧结态(124.41 MPa, 20.78%)分别提高29.7%和13.5%。断口形貌显示烧结态石墨烯/Al基复合材料的断口韧窝小并且浅,撕裂棱光亮,而挤压态石墨烯/Al基复合材料...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号