首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用柠檬酸钠作为配位剂在中性电解液中电沉积镍。研究了柠檬酸钠的质量浓度和阴极电流密度对中性柠檬酸盐电镀镍过程及镀层性能的影响。结果表明:随着柠檬酸钠的质量浓度的增加,镀镍层表面的结瘤减少,裂纹变多,镀层的硬度增大,但电解液的阴极电流效率降低;随着阴极电流密度的增大,镀镍层表面出现裂纹和大量结瘤,硬度先增后降,阴极电流效率下降。  相似文献   

2.
柠檬酸钠含量和pH对锌合金表面镀镍的影响   总被引:1,自引:0,他引:1  
采用柠檬酸钠作为镍配位剂,在ZAT10锌合金表面电沉积镍,利用扫描电镜、阴极极化等方法分析了镀层表面形貌和孔隙状况,研究了柠檬酸钠含量和镀液pH对镀镍层形貌的影响.结果表明,在柠檬酸钠含量为70~180g/L、镀液pH为4.7~7.0的条件下,所得镀镍层平整致密,无条纹、孔隙和裂纹产生.  相似文献   

3.
采用由500 g/L Ni(NH_2SO_3)_2·4H_2O、30 g/L H_3BO_3和30 g/L NiCl_2·6H_2O组成的镀液对高碳钢丝预镀镍,以制作晶体硅太阳能电池片切割用电镀金刚石线锯。研究了镀液pH、温度和电流密度对预镀镍层表面形貌、结合力和抗拉强度的影响。得到较优的预镀工艺条件为:pH4.5,温度55°C,电流密度3.5A/dm~2。该条件下所得预镀镍层细致、平整,与母线结合良好,抗拉强度达3 403.5 MPa。  相似文献   

4.
陶金  朱增伟 《电镀与涂饰》2020,(11):679-684
为了在304不锈钢表面获得结合力良好的电镀镍层,先采用140 g/L氨基磺酸溶液对304不锈钢阳极电解活化再电镀镍。通过极化曲线测试分析了304不锈钢在氨基磺酸溶液中的电化学溶解特性,接着研究了电流密度对电解活化电流效率和活化效果的影响,最后通过奥拉法测试分析了阳极电解活化电流密度对304不锈钢表面电镀镍层结合力的影响。结果表明,在高于14 A/cm2的电流密度下电解后,不锈钢表面钝化膜被去除干净,后续所得镀镍层的结合强度显著提高。  相似文献   

5.
化学镀镍与电镀镍工艺的应用研究   总被引:1,自引:0,他引:1  
本文首先介绍了化学镀镍与电镀镍工艺二者的具体工艺流程,然后详细论述了二者工艺的区别,最后介绍了二者的应用。  相似文献   

6.
研究了阳离子型表面活性剂十六烷基三甲基溴化铵(CTAB)对硫酸盐镀镍层的硬度、内应力、表面形貌、孔隙率及电解液的电流效率、分散能力、阴极极化、电化学反应阻抗的影响,并采用X射线衍射仪(XRD)表征了镀镍层的微观结构。结果表明:CTAB的加入能显著细化镀镍层的晶粒尺寸,提高镀镍层的硬度和拉应力;随着CTAB的质量浓度的增加,镀镍层的孔隙率减小,而电解液的电流效率、分散能力变化不大;在电解液中添加CTAB,使阴极极化作用略有减弱,且镍沉积阻抗减小;镀镍层呈现(200)晶面择优取向,且随着CTAB的质量浓度的增加,镀层(200)晶面的相对取向密度增大。  相似文献   

7.
对铜换热器表面电镀镍,镀液配方和工艺条件为:六水合氯化镍200 g/L,硼酸40 g/L,糖精3 g/L,十二烷基硫酸钠0.1 g/L,pH 4~5,温度(60±5)℃,电流密度1.5 A/dm2,时间20~50 min。所得的镍镀层呈光亮的银白色,电镀50 min时厚度为9.30μm,显微硬度为149 HV,结合力和高温抗氧化性优良。  相似文献   

8.
以SiC片为基体,分别在直流(DC)电源和脉冲(PC)电源下电镀Ni。研究了电流密度对Ni镀层表面形貌、粗糙度、显微硬度以及SiC和Ni镀层刻蚀选择性的影响。结果表明,随直流电流密度增大,Ni镀层的表面形貌先变好后变差,表面粗糙度先减小后增大,显微硬度和SiC/Ni刻蚀选择比逐渐减小。随脉冲电流密度增大,Ni镀层的表面形貌和粗糙度的变化趋势与直流电镀时相近,但显微硬度和SiC/Ni刻蚀选择比均逐渐增大。当电流密度较大时,在相同电流密度下脉冲电镀Ni层的各项性能均优于直流电镀Ni层。在1.4 A/dm2的平均电流密度下脉冲电镀可获得综合性能较优的Ni镀层。  相似文献   

9.
概述了镀金属衣金刚石应用方面国内外的差距。文章着重叙述了镀镍金刚石的制造方法。镀镍金刚石树脂磨具在加工硬质合金、钢-硬质合金复合材料方面的实验成果。  相似文献   

10.
采用由10 g/L NiCl2·6H2O、30 g/L NH4Cl和310~390 g/L Ni(NH2SO3)2·4H2O(氨基磺酸镍)组成的镀液(pH=3.8),在温度35°C和电流密度3 A/dm2的条件下电镀30 min,获得镍电极。研究了镀液中氨基磺酸镍质量浓度对镍镀层表面形貌和析氢催化活性的影响。结果表明,镀液中氨基磺酸镍质量浓度为350 g/L时,镍镀层结晶最细致,析氢催化活性和稳定性最佳。  相似文献   

11.
介绍一种光亮镀镍液中硼酸和氯化镍的测定方法。采用732型阳离子交换树脂分离镍及其它阳离子后,分别用氢氧化钠和硼酸银滴定硼酸和氯离子,分析结果表明,本方法简便快速、准确度高。  相似文献   

12.
通过正交试验确定了最佳镀镍复合添加剂配方:吡啶衍生物(NPB)15 mg/L,糖精钠(BSI)1 000 mg/L,苯亚磺酸钠(BSS)120 mg/L,2–乙基己烷磺酸钠(EHS)500 mg/L,烯丙基磺酸钠(SAS)1 500 mg/L和丙炔磺酸钠(PS)45 mg/L。研究了各组分对镀层光亮度和镀液分散能力的影响,结果表明,各组分对镀层亮度的影响大小顺序为NPB>BSS>EHS>SAS>PS>BSI;对镀液分散能力影响的大小顺序为BSS>NPB>EHS>BSI>PS>SAS。与某市售镀镍添加剂相比,该复合添加剂在镀层亮度、镀液分散能力、微观形貌和降低孔隙率等方面都有所提高。  相似文献   

13.
郭崇武  陈康 《电镀与涂饰》2021,40(3):225-228
研究了亚铁离子和钙离子沉淀含羧基配位剂时的协同效应.在pH为10.5~12.5的条件下,用亚铁离子和钙离子共同沉淀柠檬酸盐镀镍废水中的配位剂,并令从配合物中释放出来的镍离子生成氢氧化镍沉淀.本方法简单、快速、成本低,出水的总镍、总铁和化学需氧量能至少达到《电镀污染物排放标准》(GB 21900-2008)的"表2"要求...  相似文献   

14.
采用含有240 g/L NiS0_4·7H_2O、40 g/L H_3BO_3、50 g/LC_6H_5Na_3O_7·2H_2O的镀液,在镍氢电池的负极表面电沉积上一层厚度约为0.1 μm的镍层.镀镍修饰后,负极材料的电化学特性发生了明显变化,如极化电阻显著降低,使得水在负极材料上放电更加容易,改善了镍氢电池的充电行为.使用表面镀镍的负极材料后,镍氢电池的内部压强在正常充电与过充过程中都显著降低,这可能是因为镀镍层减缓了氢原子结合而变成氢气的过程;另外,镍氢电池的循环寿命也得到了延长.  相似文献   

15.
单玉梅  陈冬石 《电镀与涂饰》2001,20(3):42-43,50
提出了电刷镀镍技术在修复大型发电机组不锈钢转子轴颈尺寸超差上的应用。该工艺操作方便,成本低,所得镀层内应力低,与不锈钢基体结合良好。  相似文献   

16.
电镀废液中微量镍的催化光度法测定   总被引:3,自引:0,他引:3  
利用还原型若丹明B(RRhB)与KClO3的显色反应,对含Ni2+电镀废液中痕量Ni2+进行测定。结果表明,在pH为5.3HAc-NaAc缓冲溶液中具有高灵敏的显色反应,产物的最大吸收波长为555nm,方法的检出限为4.3×10-8g L,催化程度与Ni2+量在0~0.060mg L范围内符合比耳定律,加标回收率为96.5%~104%(n=6)。本法结合萃取分离,满意地测定了电镀废液中的微量镍。  相似文献   

17.
采用纳滤膜法对电镀镍漂洗废水及金属镍的在线回用进行中试研究,维持p H、TDS、电导率、温度等条件不变,改变操作条件,研究了操作压力、进水流量、料液浓度、运行时间、产水比对膜分离性能的影响。研究结果表明,增加操作压力、进水流量、料液浓度都可提高Ni2+截留率及浓缩倍数;保持各影响因素恒定运行时,纳滤膜对Ni2+截留率及浓缩倍数随运行时间的延长逐渐增大,稳定运行40 h后接近最大截留率及最大浓缩倍数,截留率达75%左右,浓缩倍数在6.2倍左右;产水比对Ni2+截留率有较大影响,产水比为1∶1、进水流量为6 t/h时,Ni2+截留率为65.7%,浓缩倍数为2.4倍。  相似文献   

18.
中间体DEP对镀镍层性能的影响   总被引:1,自引:0,他引:1  
炔胺类光亮剂与糖精的协同作用能优化镀镍效果,但目前对光亮剂协同作用优化镀镍工艺的研究不多。采用赫尔槽实验及正交试验讨论了次级光亮剂DEP及初级光亮剂糖精对镀镍层光泽度、整平性能及镀镍液分散能力的影响,并确定了合适的镀镍工艺。结果表明,DEP与糖精的协同作用会使镀镍层的光泽度与整平性能得到大幅提高,但对镀液分散能力影响较复杂。随着镀液中DEP含量与糖精含量的增加,镀液分散能力都是先减小后增加;升高温度有利于从既含有糖精又含有DEP的镀液中得到分散良好的镀层。得到DEP光亮镀镍的合适工艺条件为:0.2~1g/L糖精、9.6~19.1 mg/L DEP、温度55℃。  相似文献   

19.
用铜镍电镀污泥生产金属铜和硫酸镍的研究   总被引:1,自引:0,他引:1  
提出了利用铜镍电镀污泥生产金属铜和硫酸镍的工艺流程,并用试验考察了各工序的技术经济指标。试验结果表明,铜粉品位大于90%,铜的回收率大于95%,硫酸镍质量达到工业一级,镍回收率大于80%,浸出渣和净化渣经固化处理后可作普通建筑材料使用,工艺过程产生的废水可以达标排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号