首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of border cells from pea roots synchronizes and induces root cap cell division, wall biogenesis and differentiation. Three messages which are expressed differentially in such induced root caps have been cloned. Sequence analyses showed that the PsHRGP1-encoded protein has high homology with a homology with a hydroxyproline-rich glycoprotein. The PsCaP23-encoded protein has high homology with an alfalfa callus protein or translationally controlled human or mouse tumor protein P23. The PsRbL41-encoded protein has high homology with a highly basic 60S ribosomal protein L41. In situ hybridization showed that PsHRGP1. PsCaP23 and PsRbL41 messages are localized within dividing cells of the root cap. PsHRGP1 is highly expressed in uninduced root caps, but its message is repressed by 10-11 times as soon as cell division and differentiation begin. Expression of PsHRGP1 recovers to higher than (180%) its initial level in 30 min. PsHRGP1 is root-specific. PsCaP23 and PsRbL41 messages increase ca. 3-fold within 15 min after root cap induction. All three genes represent small families of 3-5 closely related genes in the pea genome.  相似文献   

2.
The root canal anatomy and pulp chamber morphology of 216 maxillary permanent first molar teeth of known age was examined using a radiographic technique after infusion of the root canal system with a radiopaque sodium iothalomate gel. This technique proved to be a rapid and effective method for the examination of root canal morphology and is recommended when root canal anatomy needs to be examined before further investigations are carried out. Over 95% of palatal and disto-buccal roots contained a single root canal. The mesio-buccal root was more complex. All types of configurations were seen. Only 26% of mesio-buccal roots showed a single canal. The pulp canal in all roots appeared to narrow at an early age. In the mesio-buccal root, a definite two-directional calcification pattern was apparent in most teeth by the age of 10. The rate of progress of root formation was very variable. There was no apparent relationship between the type of canal system in the mesio-buccal root and the type of canal orifice present. The transverse cross-sectional shape of the pulp chamber was trapezoidal in 81% of teeth.  相似文献   

3.
We have examined the effect of diabetes on sodium/myo-inositol cotransporter (SMIT) mRNA levels and myo-inositol content in the kidney to test the hypothesis that diabetes-induced changes in renal myo-inositol levels are due to the regulation of SMIT mRNA levels. In streptozotocin-induced diabetic rats, after 3, 7 and 28 days of diabetes, SMIT mRNA levels in the whole kidney were increased three to fivefold, and remained increased by about twofold after six months of diabetes. Insulin treatment of diabetic rats normalized blood glucose levels and prevented the increase in SMIT mRNA levels. Treating diabetic rats with sorbinil, an aldose reductase inhibitor, corrected the abnormal accumulation of sorbitol but had no effect on the diabetes-induced increase in renal SMIT mRNA levels. The regional distribution of SMIT mRNA from normal rats showed a relative abundance in cortex, outer medulla, and inner medulla of 1.0:3.4:7.0. After seven days of diabetes, the levels of SMIT mRNA and myo-inositol content were significantly increased only in the outer medulla. In situ hybridization studies revealed that SMIT mRNA in the outer medulla was predominately localized to the medullary thick ascending limbs of Henle's loop and was not localized to any specific cell in the inner medulla. This distribution pattern was unchanged in diabetic rats. These studies show that diabetes causes an increase in renal SMIT mRNA, which is primarily localized to the outer medulla. Accumulation of myo-inositol by the thick ascending limb of Henle's loop may account for most of the increase caused by diabetes.  相似文献   

4.
A salt-tolerant stable cell-suspension culture from the halophyte Mesembryanthemum crystallinum L. has been established from calli generated from leaves of 6-week-old well-watered plants. Optimal cell growth was observed in the presence of 200 mM NaCl, and within 7 d cells were able to concentrate Na+ to levels exceeding those in the growth medium. Accumulation of Na+ was paralled by increases in the compatible solute pinitol and myo-inositol methyl transferase (IMT), a key enzyme in pinitol biosynthesis. Increasing concentrations of NaCl stimulated the activities of tonoplast and plasma-membrane H(+)-ATPases. Immunodetection of the ATPases showed that the increased activity was not due to changes in protein amount that could be attributed to treatment conditions. A specific role for these mechanisms in salt-adaptation is supported by the inability of mannitol-induced water stress to elicit the same responses, and the absence of enzyme activity and protein expression associated with Crassulacean acid metabolism in the cells. Results demonstrate that these M. crystallinum cell suspensions show a halophytic growth response, comparable to that of the whole plant, and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response.  相似文献   

5.
Manganese-dependent, CMP-independent incorporation of myo-[3H]inositol into phospholipids of rat liver microsomes was studied in an attempt to clarify the physiological significance of this headgroup-exchange reaction. The enzyme responsible worked best with Mn2+ as a co-factor, but Mg2+ at physiological concentrations supported a significant rate of incorporation. The K(m) for myo-inositol was around 11 microM, yet incorporation of myo-[3H]inositol was unaffected by as much as 5 mM choline, ethanolamine, glycerol or serine; as this is a reversible reaction, these data imply that phosphatidylinositol is the most likely lipid substrate. Similarly, other inositols showed an apparent affinity at least two orders of magnitude lower than myo-inositol. Glucosamine alpha 1-6 myo-inositol also had a low affinity for the enzyme, making it unlikely that this headgroup-exchange activity is part of a metabolic pathway for glycosyl phosphatidylinositols. The phosphatidylinositol radiolabelled by headgroup exchange was deacylated and deglycerated, and the resulting inositol phosphate headgroup cochromatographed on anion exchange HPLC with myo-inositol l-phosphate. The simplest interpretation of all the data is the apparent paradox that this enzyme functions at a slow rate under physiological conditions to remove the myo-inositol headgroup from phosphatidylinositol, only to replace it with another myo-inositol.  相似文献   

6.
A mathematical model is developed that describes water uptake from soil by the roots of transpiring plants. Starting from a one-dimensional Richards equation with a root water extraction term, a partial differential equation predicting the moisture content in the soil profile is formulated. There are many expressions in literature that predict water extraction by plant roots, each one of them having its own merits and demerits. This study proposes a simple model with a linear root water extraction term that varies with time. The model also incorporates a sinusoidal root growth function that takes into account the root growth with time. The flow equation is subjected to a boundary condition that signifies the potential evaporation or the applied water (head) during the irrigation application time at the top boundary. The simulated model without the extraction function is validated by comparing the model results with experimental studies predicting soil moisture content for both a homogeneous and a layered medium. A linear root water extraction term is later adopted in the model, and a hypothetical case is simulated to compute the water uptake by plant roots. The comparison in all test cases was found to be reasonably good.  相似文献   

7.
T Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate embryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation.  相似文献   

8.
Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism has been studied extensively using Arabidopsis genetics, but the exact mechanisms for gravitropism are not fully understood. Here, we demonstrate that five NPY genes play a key role in Arabidopsis root gravitropism. NPY genes were previously identified as regulators of auxin-mediated organogenesis in way with the AGC kinases PID, PID2, WAG1, and WAG2. We show that all five NPY genes are highly expressdd in primary root tips. The single npy mutants do not display obvious gravitropism defects, but the npyl npy2 npy3 npy5 quinntuple mutants show dramatic gravitropic phenotypes. Systematic analysis of all the npy double, triple, and qudruple combinations demonstrates that the five NPY genes all contribute to gravitropism. Our work indicates that gravitropism,phototropism, and organogenesis use analogous mechanisms in which at least one AGC kinase, one NPH3/NPY gene, and one ARF are required.  相似文献   

9.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyltransferase (FTase) gene was examined using transgenic expression of the beta-glucuronidase (GUS) gene fused to a 3.2 kb 5' upstream sequence of the gene encoding the pea FTase beta subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase beta subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

10.
The spinal nerves in amphioxus are compared with the spinal and cranial nerves in lampreys. The dorsal spinal roots in amphioxus are similar to the mixed sensory and motor dorsal roots of many cranial nerves in lampreys but not to the purely sensory dorsal spinal roots in lampreys and gnathostomes. Likewise, cranial nerves V, VII, IX and X in lampreys, and all spinal nerves in amphioxus, lack a separate ventral motor root which is a constant feature of all spinal motor roots in lampreys and other vertebrates. Based on these similarities and differences, it is proposed that cranial and spinal nerves in craniates are independently derived serial homologs of elements of an amphioxus-like ancestral pattern. Further evolution involved the addition of neural crest-derived ganglia to most cranial and all spinal nerves, and the addition of placodally derived ganglia to many cranial nerves. The possible homology of ocular motor nerves is discussed but cannot be resolved owing to the absence of these nerves in hagfishes, which are the only relevant outgroup.  相似文献   

11.
To unravel the functions of cell wall and vacuolar invertases in carrot, we used an antisense technique to generate transgenic carrot plants with reduced enzyme activity. Phenotypic alterations appeared at very early stages of development; indeed, the morphology of cotyledon-stage embryos was markedly changed. At the stage at which control plantlets had two to three leaves and one primary root, shoots of transgenic plantlets did not separate into individual leaves but consisted of stunted, interconnected green structures. When transgenic plantlets were grown on media containing a mixture of sucrose, glucose, and fructose rather than sucrose alone, the malformation was alleviated, and plantlets looked normal. Plantlets from hexose-containing media produced mature plants when transferred to soil. Plants expressing antisense mRNA for cell wall invertase had a bushy appearance due to the development of extra leaves, which accumulated elevated levels of sucrose and starch. Simultaneously, tap root development was markedly reduced, and the resulting smaller organs contained lower levels of carbohydrates. Compared with control plants, the dry weight leaf-to-root ratio of cell wall invertase antisense plants was shifted from 1:3 to 17:1. Plants expressing antisense mRNA for vacuolar invertase also had more leaves than did control plants, but tap roots developed normally, although they were smaller, and the leaf-to-root ratio was 1.5:1. Again, the carbohydrate content of leaves was elevated, and that of roots was reduced. Our data suggest that acid invertases play an important role in early plant development, most likely via control of sugar composition and metabolic fluxes. Later in plant development, both isoenzymes seem to have important functions in sucrose partitioning.  相似文献   

12.
13.
Brucella abortus is a facultative intracellular pathogen of cattle and humans that is capable of survival inside macrophages. In order to understand how B. abortus copes with the conditions during intracellular growth in macrophages, the protein synthesis pattern of the bacteria grown inside bovine macrophages has been compared with that of bacteria grown in the cell culture medium by two-dimensional polyacrylamide gel electrophoresis. Approximately 24 new proteins that are not detected in the bacteria grown in the cell culture medium have been induced during intracellular growth in macrophages. In contrast, approximately 50 proteins that were expressed during growth in cell culture medium were completely repressed during intracellular growth. The level of expression of 19 proteins increases while that of 54 proteins decreases during intracellular growth. To understand these results, the protein synthesis pattern of B. abortus during intracellular growth was compared with those during other stress conditions. Under each stress condition studied, several new proteins were induced that were not present during regular growth conditions. Comparison of the protein synthesis pattern of B. abortus during intracellular growth with those obtained under various stress conditions has indicated that the response to intracellular growth was not just a simple sum of stress conditions studied so far.  相似文献   

14.
Development of Comprehensive Soil Salinity Index   总被引:1,自引:0,他引:1  
Crop yield is a function of many agroclimatic factors. However, excessive wetness, dryness, or soluble salts in the root zone are three important stresses that inhibit crop growth and reduce yield. Stress due to wetness can be expressed by an index such as SEW30 (sum of excess water over 30 cm); however, a similar index is not available for stress due to soil salinity. An index, the sum of excess salinity over threshold (SEST), is proposed here. This index represents the cumulative salinity status of the root zone with respect to a specific crop in excess of the crop’s threshold level. Specifically, it incorporates the sum of daily salinity excesses over the threshold salinity level of the crop at different points in the root zone and over a specific crop-growth stage (or over an entire cropping period). The proposed salinity index, however, needs to be evaluated with field data before it can be used to characterize salt buildup in soil under different irrigation regimes.  相似文献   

15.
Mitochondria fulfill important functions in photosynthetic cells not only in darkness but also in light. Mitochondrial oxidative phosphorylation is probably the main mechanism to supply ATP for extrachloroplastic functions in both conditions. Furthermore, during photosynthesis mitochondrial electron transport is important for regulation of the redox balance in the cell. This makes mitochondrial function an integral part of a flexible metabolic system in the photosynthetic cell. This flexibility is probably very important in order to allow the metabolism to override disturbances caused by the changing environment which plants are adapted to.  相似文献   

16.
The study of the underground parts of plants is often difficult, and as a result roots are often treated as homogeneous physiological entities with respect to root respiration. In this study we demonstrate a partitioning of respiration within root tissues using nitro blue tetrazolium staining and an incident light optical system that permits detailed observations of intact roots. The assay is rapid and easy to perform, and reveals that respiratory activity in roots is not uniform in space and time. The results show that root hairs in particular may be regions of enhanced respiratory activity in some species or in certain developmental or physiological states. This fact has important implications for the role of root hairs in the overall respiratory budget of roots and the energetics of nutrient assimilation. The results suggest that root respiration studies should consider differential respiratory activities of root cell types within roots.  相似文献   

17.
18.
In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.  相似文献   

19.
1. Acute sodium loading causes a rapid decrease in the circulating concentration of angiotensin II (AngII), which is apparent from 5 min after sodium administration. This could result from an increase in AngII catabolism and/or a decrease in AngII synthesis/secretion. However, the major determinant of AngII synthesis is thought to be a change in plasma renin activity, which occurs over a longer time frame (15 min). 2. To investigate the mechanisms underlying the rapid decrease in plasma AngII engendered by sodium administration, we performed metabolic clearance studies in male New Zealand white rabbits before and after a hypertonic sodium load of 1.5 mmol/kg as 0.513 mol/L saline i.v. bolus. 3. The metabolic clearance rate of AngII increased significantly from 42.2 +/- 9.0 mL/min per kg before sodium to 110.8 +/- 33.7 mL/min per kg after sodium administration (P < 0.05). The calculated or theoretical secretion rate decreased from 1470.7 +/- 404.2 to 573.5 +/- 139.5 fmol/min per kg (P < 0.025) in response to sodium. 4. We conclude that an increase in AngII metabolism and a decrease in synthesis/secretion contribute to the reduction in circulating AngII, which occurs in the first 60-90 min after sodium loading.  相似文献   

20.
Using a polyclonal antibody against glycerol kinase from Enterococcus faecalis, we could demonstrate that glycerol kinase is inducible by growth on glycerol-containing medium and that during growth on glycerol the enzyme is mainly phosphorylated. Glucose and other sugars metabolized via the Embden-Meyerhof pathway strongly repressed the synthesis of glycerol kinase, while if glycerol was also present during growth, low activity, reflecting partial induction and the presence of mainly unphosphorylated, less active enzyme, was found. With gluconate, which is also a substrate of the phosphotransferase system, repression of glycerol kinase was less severe, but the enzyme was mainly present in the less active, unphosphorylated form. Effects of growth on different carbon sources on glycerol uptake are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号