共查询到17条相似文献,搜索用时 62 毫秒
1.
建立相应的安全监控模型来分析大坝变形监测资料对保障大坝服役安全意义重大。BP神经网络模型在此方面得到了广泛应用,但采用蚁群算法(ACO)对BP神经网络参数寻优时存在因初期搜索完全随机导致收敛速度慢的问题。将具有快速随机的全局搜索能力的遗传算法(GA)引入蚁群算法中,利用遗传算法指导生成初始信息素分布,再由蚁群算法正反馈寻得最优解来训练BP神经网络,从而得到大坝变形预测值,2种算法优势互补,缩短了蚁群算法的搜索时间并避免陷入局部最优点。在此基础上,为进一步提高预测精度,采用马尔科夫链(MC)对预测结果进行改进,由此建立了应用于大坝变形监控的GACO-BP-MC模型。工程实例分析表明,该模型在参数优化方面具有较快的寻优速率,且具有较高的拟合和预报能力。 相似文献
2.
针对Elman神经网络收敛速度慢、容易陷入局部极小等问题,建立了人工蜂群算法(ABC)与Elman神经网络组合的大坝变形监控模型。应用于某混凝土重力坝的结果表明,单纯Elman神经网络建模方法预测的相对误差和标准差分别为3.50%和0.131,ABC-Elman(人工蜂群算法与Elman神经网络)模型预测的相对误差和标准差分别为1.98%和0.063。从各影响因子对大坝变形的贡献上看,水压分量占27.9%,温度分量占62.3%,时效分量占9.8%。ABC-Elman模型在建模效率、预测精度等方面均有一定的优势,较适合于大坝变形的建模分析,并可推广于大坝渗流、应力等监控模型中。 相似文献
3.
一个合理的位移监控模型是通过大坝安全监测实现大坝安全监控的关键因素之一.针对传统的统计模型、确定模型和混合模型的不足,提出基于遗传算法优化BP神经网络的GA-BP模型的方法,并将该模型用于大坝变形预报研究.最后以某拱坝为例,对该拱坝拱冠梁坝顶径向水平位移实测值建立了GA-BP模型,并将模型用于某坝顶径向水平位移预报.结果表明GA-BP模型不仅比统计模型具有更高的拟合精度,且在大坝变形监测预报上也是有效的. 相似文献
4.
基于NMEA-BP大坝变形监测模型研究 总被引:2,自引:0,他引:2
在对思维进化算法(MEA)改进的基础上,开展了基于思维进化算法与BP神经网络的大坝变形监测模型的研究。通过引入小生境技术和思维进化算法,克服了BP神经网络易陷入局部最优值、训练时间长和收敛速度慢等缺点,极大地提高了其搜索效率和全局搜索能力。通过进一步利用改进的思维进化算法优化BP神经网络的权值和阈值,建立了NMEA-BP大坝变形监测模型,并用该模型对工程实例进行了拟合预测。结果表明,NMEA-BP模型有效提高了大坝变形预测的精度,能更高效准确的进行大坝变形监测。研究成果为大坝变形监测的理论和实践研究提供参考。 相似文献
5.
变形监测是大坝安全监测的必设项目,由于影响因子众多,常利用神经网络(如BP,RBF等)进行参数选取和模型建立。传统的径向基函数(RBF)神经网络因网络结构简单、收敛速度快而被广泛运用,但其在预测中易陷入局部最优且参数选取不当会对其收敛性产生影响。因此,首先利用动态权重粒子群算法(WPSO)对RBF神经网络的3个参数(隐含层基函数的中心c、宽度d及隐含层到输出层的权值w)进行优化,建立基于WPSO-RBF的大坝变形监控模型,然后将WPSO-RBF模型作为弱分类器,采用AdaBoost算法进行集成,建立基于WPSO-RBF-AdaBoost的大坝变形监控模型。将该模型运用到工程实例中,实例结果显示该模型具有收敛速度快、分类精度高、泛化能力好,可建立较优的大坝变形监控模型。 相似文献
6.
以预测土壤冲刷量为目标,根据《中国河流泥沙公报》数据资料,建立了以土壤类型、地形、坡度、植被、降雨为输入因子,土壤侵蚀量为输出因子,拓扑结构为5-7-1的BP神经网络预测模型。针对BP神经网络模型缺陷,采用了人工蜂群算法(ABC)对BP神经网络的权值和阈值进行优化,建立了ABC-BP模型,并对该模型的性能进行了验证。结果表明,所建立的ABC-BP土壤侵蚀量预报模型模拟值与实测值的相关系数、平均相对误差分别为0.994 2和4.13%,两者之间无显著的统计学差异,具有较好的一致性和较高的模拟精度。 相似文献
7.
8.
变形监测是大坝安全运行的重要保证,结合白石水库混凝土坝真空激光X向位移资料进行分析,提出应用改进的BP神经网络思想建立的安全监测模型,结合对相关数据参数进行系统性的研究,并与传统BP神经网络模型训练、预测结果对比,得出改进的BP神经网格模型优于传统BP神经网络模型,具有一定抗差能力,能够降权使用可疑值,相关系数较高,预测精度好,可在实际中广泛运用。 相似文献
9.
为了对大坝安全进行准确监控,利用分形几何理论预测大坝变形。针对一般常维分形分布不能很好分析大坝变形数据的问题,对监测数据进行N阶累计和变换,对变换后的数据利用分段变维分形模型计算各阶变形维数序列,再选择效果较好分形维数已知序列预测未知分形维数,最后反推大坝变形预测数据。针对传统变维分形预测模型分形维数预测方法的不确定性和所需监测数据量大的缺点,利用灰色模型预测分形维数,建立改进的大坝分形几何监控模型。结合工程实例,对比插值法预测分形参数的传统分形几何预测模型和灰色模型改进后的预测模型之间的预测精度,结果表明,改进分形模型不仅在预测精度上有所提高,而且更具稳定性和抗波动性。 相似文献
10.
针对大坝自动监测数据序列存在的不稳定性和测值漂移问题,提出了基于集合经验模态分解(EEMD)和遗传(GA)BP神经网络的大坝变形监测数据预测方法。采用EEMD技术提取反映大坝真实变形的低频信号,剔除自动监测系统数据中存在的噪声和野值,利用遗传算法优化的BP神经网络对真实信号进行学习与外推,据此构建EEMD-GA-BP模型。利用本文模型计算得到大坝变形的预测值,将其与实测变形值进行对比,并根据残差大小比较了本文方法与其它方法的预测效果。算例表明,本文提出的组合模型能有效地提高大坝变形预测精度。 相似文献
11.
针对土石坝变形具有较强的非线性特征,传统统计模型预测精度不高,误差较大的问题。引入支持向量机模型(SVM),并采用人工蜂群算法(ABC)对支持向量机的关键参数惩罚因子C和核函数参数σ进行寻优,提高模型的拟合和预测精度,建立ABC-SVM模型应用于土石坝变形监测。实例验证分析表明:与传统多元回归模型和SVM模型相比,ABC-SVM模型预测精度高、泛化能力强。利用ABC-SVM模型对土石坝变形进行预测效果良好,可在大坝安全监测领域推广应用。 相似文献
12.
针对大坝变形常规统计预报模型在监测信息挖掘时的优势单一性及预报精度欠佳等问题,视大坝变形观测资料为非平稳时间序列,从影响大坝变形的因素出发,将其分为周期性影响因素与随机影响因素,利用多尺度小波分析方法将大坝变形监测序列分解并重构,结合BP神经网络与自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA)对其随机信号与系统信号分项训练预报,并将其预报值相叠加,据此,应用时间序列原理提出了一种基于BP-ARIMA的混凝土坝多尺度变形组合预报模型。工程实例分析表明,所建组合模型较常规模型能够有效挖掘监测信息中所蕴含的有效成分,预报精度显著提升,且计算分析过程简便,为高边坡及水工建筑物中其他监测指标的预报提供了新方法。 相似文献
13.
建立安全监测网络模型来分析和预测大坝变形位移信息,对保障大坝安全稳定服役意义重大。针对大坝安全监测BP神经网络模型运算复杂、收敛速度慢、易陷于局部最优、不能准确反映和预测大坝运行状况的问题,引入蚁群算法(ACO)全局搜索功能搜寻BP神经网络参数最优解,并通过样本数据训练BP网络获得大坝变形位移预测值。工程实例应用表明:ACO-BP网络模型在参数优化方面较BP网络更易于收敛,误差较小、预测性能良好,可为大坝变形位移监测和安全预报提供一种新的非线性建模仿真分析方法。 相似文献
14.
潘洁晨 《水资源与水工程学报》2012,23(3):166-169
针对传统的数学模型方法的不足,本文通过对BP网络模型的研究,建立改进的BP神经网络预测模型即采用附加动量法和自适应学习效率相结合的BP模型,并使用MATLAB语言编程加以实现。并将该模型应用于哈尔滨西泉眼水库大坝变形监测数据的分析和预测,发现其预报精度较传统模型有较大提高。 相似文献
15.
BP神经网络以其对非线性系统的强大映射能力而被广泛应用于模糊性、随机性强的大坝变形预测分析中。传统的BP神经网络由于初始权值和阈值的随机性,容易导致网络在训练过程中极易陷入局部最小值,同时存在网络收敛速度慢等缺点。针对传统算法的不足,采用改进的粒子群算法(IPSO)对BP网络的初始权值和阈值给予优化,建立大坝变形预测的IPSO-BP模型,并与PSO-BP网络模型进行对比。结果表明,改进的IPSO-BP模型具有收敛速度更快、预测精度更高的优点。该方法可供大坝安全监测和预警分析参考。 相似文献
16.
针对大坝位移预测问题的复杂性、时变性和传统预测模型的不足,结合遗传算法(GA)的全局随机搜索能力和Elman神经网络的非线性映射、动态反馈信息和记忆功能的特点,建立了GA-Elman神经网络模型。与Elman神经网络模型相比,GA-Elman神经网络模型在预测大坝变形时具有全局收敛的特点,可以克服Elman神经网络容易陷入局部极小的缺陷。将该模型用于预测某水电站大坝实测变形数据,表明GA-Elman神经网络模型的预测精度高,在大坝位移预测中具备实用性。 相似文献
17.
针对混凝土坝变形预测模型中环境量与效应量之间复杂的非线性问题,以及单支持向量机(SVM)模型预测精度不高的问题,提出一种AdaBoost-SVM的混凝土坝变形预测模型,该模型采用结构风险最小化的原则,并借鉴提升算法强化学习的思想,从而提高模型的学习性能,达到增强模型泛化能力和预测精度的目的。结合实例,经过AdaBoost-SVM预测模型对混凝土坝位移原型监测数据进行训练及预测,并将预测结果与单支持向量机模型的预测结果进行对比,结果显示:基于AdaBoost-SVM预测模型得到的均方差为0.5565,平均误差绝对值为0.40,预测精度比单支持向量机模型高出一个数量级;而且相较于单支持向量机预测模型,强化后的模型在预测时段表现出更好的稳定性。该模型综合了提升算法与支持向量机各自的优势,可作为混凝土坝变形预测的一种有效方法。 相似文献