首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Correlation between the chemical structure of polyamides and the reactivity to hypochlorous acid was investigated to evaluate their chlorine resistance as a membrane material for reverse osmosis. Modes of interaction of polyamides with hypochlorous acid were classified into three; no reaction, reversible chlorination at the amide nitrogen, and irreversible chlorination at the aromatic nucleus. These modes of interaction were dependent upon the amine component of polyamide. Secondary amines such as piperazine and N-methylaniline gave amides which were quite stable against hypochlorous acid. Thus, poly(isophthaloyl piperazine) was most stable among the polyamides investigated in this study. Polyamide derived from aliphatic primary diamines such as polyethyleneisophthalamide gave an N-chlorinated amide, which could be reversibly dechlorinated by the treatment with a reducing agent such as sodium hydrosulfite. Polyamides comprised of aromatic primary diamines such as poly(m-phenyle-neisophthalamide), on the other hand, gave a product with chlorinated m-phenylene nucleus which could not be dechlorinated by a reducing agent.  相似文献   

2.
The viscous and elastic properties of linear high density polyethylene (HDPE), poly(butylene terephthalate) (PBT), and poly(ethylene terephthalate) (PET) are investigated using an Instron capillary rheometer and the Philippoff–Gaskins–Bagley analysis. The viscous properties studied are the shear viscosity and the constant shear rate activation energy and the elastic properties studied are the entrance pressure drop and the end correction. The variables are shear rate and temperature. The order of decreasing viscosity is HDPE>PET>PBT; the order of decreasing activation energy is PB>PET>HDPE; the order of decreasing entrance pressure drop is HDPE>PET>PBT; and the order of decreasing end correction is PBT>PET>HDPE. As temperature increases, both viscosity and entrance pressure drop decrease. The observed behavior is discussed in terms of the difference in number of terephthalic acid moities in the polymer chains and in terms of oligomer plasticization.  相似文献   

3.
In this work, the biomacromolecule, single-stranded deoxyribonucleic acid (ssDNA) was innovatively incorporated into the polyamide layer to tailor the permeate flux and antifouling performance of the nanofiltration (NF) membranes. With active amines groups, the ssDNA was as the aqueous phase monomers along with piperazine (PIP), and reacted with trimesoyl chloride on polyethersulfone substrate to fabricate thin-film composite (TFC) NF membranes. The NF membrane prepared under optimal ratio of ssDNA/PIP had a pure water permeability of 75.8 L m−2 h−1 (improved 58% compared to PIP NF membrane) and Na2SO4 rejection of 98.0% at 6.0 bar. The rejections for different inorganic salts were the order: Na2SO4 (98.0%) > MgSO4 (89.2%) > MgCl2 (72.8%) > NaCl (23.0%). Furthermore, the TFC NF membranes showed good antifouling performance in long-term running with 300 ppm bovine serum albumin and humic acid solution. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 47102.  相似文献   

4.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) as a novel membrane material was successfully prepared from poly(phthalazinone ether sulfone ketone), with concentrated sulfuric acid as the solvent and catalyst, and chloromethyl octyl ether with lower toxicity as the chloromethylated regent. The effects of the reaction conditions on the preparation of CMPPESKs with different degrees of chloromethylation were examined. The quantity of chloromethyl groups per repeated unit (DCM) of CMPPESK was determined by the method of analysis of the chlorine element, and structures were characterized by 1H‐NMR spectroscopy. The introduction of chloromethyl groups into the polymer chains led to a decrease in the decomposition temperature. With increasing DCM, the initial degradation temperature declined. CMPPESK had good solubility and was soluble in N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylacetamide (DMAc), and chloroform. However, quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) had excellent solvent resistance, was only partly soluble in sulfuric acid (98%), and was swollen in N,N‐dimethylformamide. QAPPESK nanofiltration (NF) membranes had about 90% rejection for MgCl2, and the performance of the NF membrane prepared with DMAc as the solvent was superior to that of the NF membrane prepared with NMP as the solvent. In addition, the rejection to the different salt solutions followed the following sequence: MgCl2 > MgSO4 > NaCl > Na2SO4. Furthermore, the thermotolerance of the QAPPESK NF membrane was examined, and the results show that when the solution temperature rose from 11 to 90°C, the water flux increased more than threefold with stable salt rejection. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The aim of this study was to develop the water flux and antifouling properties of a polyamide (PA) nanofiltration membrane. A nascent PA membrane was prepared with an interfacial polymerization technique and modified with 2,5‐diaminobenzene sulfonic acid (2,5‐DABSA) as a second modification. The effects of the 2,5‐DABSA monomer concentration and the modification time on the membrane performance were investigated. The chemical structure, morphology, roughness, hydrophilicity, molecular weight cutoff, and antifouling properties of the membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force spectroscopy, contact angle measurement, poly(ethylene glycol) tracers, and cetyl trimethyl ammonium bromide filtration, respectively. The PA membrane with optimized performance was shown to have a greater than 44% higher water permeate flux with a change in the salt rejection in the order RNa2SO4 > RCaCl2 > RNaCl to RNa2SO4 > RNaCl > RCaCl2. The improvement of the hydrophilicity led to excellent antifouling properties in the new PA membranes and illustrated a promising and simple method for the fabrication of high‐performance PA membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43583.  相似文献   

6.
Herein, thin-film composite membranes consisting of poly(m-phenyleneisophthalamide) substrate and polyamide active layer were constructed by transition metal ion-assisted interfacial polymerization method. As compared to the traditional polyamide membranes, a much thinner polyamide layer (33 vs. 200 nm) can be synthesized with higher permeance (3.2 vs. 0.62 L m−2 h−1 bar−1) in the organic solvent nanofiltration. Similarly, the prepared membranes maintained a high rejection (>99%) for various dyes. Optimal membranes prepared by using Co2+ exhibited strong tolerance to various organic solvents with good long-term stability. Positron annihilation spectroscopy and other characterization methods were used to investigate the relationships between the membrane microstructures and the enhanced separation performance. Based on molecular dynamics simulation, it was found that the diffusion coefficient of polyethyleneimine monomer decreased by about 18 times after adding Co2+ to the aqueous solution (forming coordination interaction). This procedure has great potential and sustainability for practical organic solvent nanofiltration applications.  相似文献   

7.
The polymerisation of a mixture of thiophene and N‐vinylcarbazole was achieved in aqueous suspension in the presence of nanodimensional alumina and FeCl3 as oxidant. The resultant composite was found to contain both polythiophene (PTP) and poly(N‐vinylcarbazole) (PNVC) components even after reflux in benzene, which would remove any PNVC homopolymer. The presence of the individual polymer components was endorsed by FTIR spectroscopic analyses. Thermogravimetric analyses showed that the overall stabilities of the composite and the corresponding homopolymers were in the order: PTP–Al2O3 > PTP > PTP–PNVC–Al2O3 > PNVC. Differential thermal analyses studies showed the manifestation of two different exotherms corresponding to the presence of two different polymeric constituents in the PTP–PNVC–Al2O3 composite. Differential scanning calorimetry studies revealed two glass‐transition temperatures (Tg) suggesting the presence of two polymeric moieties in the PTP–PNVC composite. Scanning electron micrographs of the PTP–Al2O3 and PTP–PNVC–Al2O3 composites showed distinctive morphological patterns. Transmission electron microscopic images of the composite revealed that the average particle size varied between 20 and 80 nm. DC conductivities of the composites were of the order of 10?6 S cm?1. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
A new type of membrane has been prepared for hyperfiltration (reverse osmosis) desalination that is essentially a very thin polyelectrolyte membrane. It is prepared by casting an aqueous solution of a polyelectrolyte, specifically poly(acrylic acid) (PAA), directly on one surface of a finely porous support membrane. In hyperfiltration tests, these composite membranes exhibit desalination performance comparable in dilute solutions to that observed with cellulose acetate membranes of the Loeb-Sourirajan type. The water flux through these membranes is linear in the pressure up to 100 atm. Salt rejection is a function of pressure; it is also a function of the concentration of the feed solution and the charge of the counterion, in qualitative agreement with the Donnan ion-exclusion mechanism. Typical long-term results range from water fluxes of 2 × 10?3 g/cm2-sec (50 gal/ft2-day) and 80% salt rejection to 0.2 × 10?3 g/cm2-sec (5 gal/ft2-day) and >99.5% salt rejection at 1500 psi with 0.3 wt-% NaCl. These membranes appear to be useful for brackish water desalination.  相似文献   

9.
The effect of halogen based disinfectants including monochloramines (NH2Cl), free chlorine (HOCl/OCl), and free oxidants (mixture of HOCl/OCl and HOBr/OBr) on polyamide membrane was studied in synthetic Ocean seawater. Formation and stability of these oxidants were also examined. Permeability and salt rejection of flat sheet polyamide RO membranes following exposure to the halogen based oxidants were compared to the baseline performance of unexposed membranes. The ratio between free chlorine and free bromine was found to depend on the ratio between the bromides, naturally found in seawater, and the added chlorine. Bromide enhanced the degradation of monochloramines but did not affect the stability of free chlorine. All the oxidants damaged the polyamide membranes studied while the free oxidants appeared to be the most aggressive.  相似文献   

10.
Thin-film-composite (TFC) polyamide membranes with flux-enhancement were prepared by the interfacial polymerization of m-phenylenediamine with trimesoyl chloride on porous polysulfone support. The addition of 1,3-propanesultone (PS) in the organic phase is used to influence the interfacial polymerization process and the morphology of polyamide layer to improve water flux. FTIR, 1H NMR and UV spectra were performed to investigate the effect of PS on interfacial polymerization process. In order to study the forming mechanism of TFC membrane, the resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, XPS, as well as static contact angle. In comparison with conventional polyamide membrane, the TFC membranes fabricated with PS as the additive exhibit much more improved water flux without NaCl rejection decreasing. Notably, the optimal TFC membrane with 0.04% (wt/v) PS as the additive in organic phase shows the best performance with a NaCl rejection of 99.39% and a water flux of 48.57 L m?2 h?1 at 1.55 MPa, which has increased 41% compared to the value of the conventional TFC membrane.  相似文献   

11.
Conducting composites of polythiophene (PTP) and polyfuran (PF) with acetylene black (AB) were prepared via chemical oxidative polymerization of thiophene and furan in a suspension of AB in CHCl3 at room temperature using anhydrous FeCl3 as the oxidant. Formation of PTP and PF and their subsequent incorporation in PTP–AB and PF–AB composite systems were confirmed by FTIR analysis. Scanning electron microscope analysis showed the presence of compact clusters of particles in both composites. Transmission electron micrographs of PTP–AB and PF–AB composites showed formation of globular polymer encapsulated AB particles with average diameters of the order of ~100 nm in both systems. Thermogravimetric analysis revealed that the overall thermal stability varied in the order: AB > PTP–AB > PTP and AB > PF–AB > PF. DC conductivity values for the PTP–AB and PF–AB composites were of the order of 10?2 and 10?3 S cm?1, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

12.

The complexation–ultrafiltration technique has been introduced as a capable system to remove heavy metals ions from wastewater. This method needs a water-soluble polymer; therefore, in this paper we synthesized super water-soluble poly(itaconic acid) (PITA) and employed it in polymer-assisted ultrafiltration process to remove Pb(II) ions from synthetic wastewater solutions. The itaconic acid can be produced from different agricultural products and is a green and eco-friendly material. Factors influencing the removal of the metals ions including poly(itaconic acid) concentration, pH and permeate flux were investigated. The results showed that the maximum percentage of metal ion removal was obtained in the basic pH (pH > 7). The flux test was performed by 200 mg/L of poly(itaconic acid) and after 60 min, the flux of membrane was 33.4 L/m2h. The simultaneously selective removal ability of the poly(itaconic acid) for adsorption of different metal ions (Pb2+, Sn2+, Cu2+, Zn2+, and Cd2+) was also studied. The trend of rejection was Pb2+ > Cu2+ > Sn2+ > Zn2+ > Cd2+. The highest rejection of Pb(II) ions was achieved as 86%. Generally, the results of this research demonstrated that poly(itaconic acid) (with two carboxyl groups on its repeating unit) is more effective in removing heavy metals ions from wastewater in comparison with customary polymers.

  相似文献   

13.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

14.
A facial method for preparing reverse osmosis polyamide (PA) membranes of excellent antifouling and separation performance was developed via covalently grafting phosphonic acid on membrane surface. First, a pristine PA layer was synthesized by interfacial polymerization between m-phenylenediamine and trimesoyl chloride. Then, a second interfacial reaction was implemented between ethylenediamine and the residual acryl chloride on the pristine PA layer, generating an active layer enriched by primary amine. Finally, the amine-rich surface treated by formaldehyde and phosphorous acid to produce a membrane surface modified by phosphonic acid groups. Surface characterization by attenuated total reflectance infrared, X-ray photoelectron spectroscopy and zeta-potential measurements illustrated the presence of phosphonic acid group. The lowest contact angle of modified membrane was 26°, demonstrating the membrane possessed an outstandingly wettable surface. The optimal separation performance was 88 L m−2 h−1 of water flux and 99.4% of salt rejection under 1.55 MPa. In addition, bovine serum albumin was used as organic foulant to measure the antifouling property of membranes. The result of dynamic fouling experiments indicated that the modified membrane exhibited better antifouling (of which the irreversible fouling degree was 7.1%) compared with commercial membrane BW30 (of which the irreversible fouling degree was 13.5%). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46931.  相似文献   

15.
奥德  张皓冰  吕美婵  王海涛  常娜 《化工学报》2020,71(z2):297-305
采用原位生长法制备了MOF-199@氧化石墨烯(GO)纳米复合材料,并对聚偏氟乙烯(PVDF)支撑膜进行表面改性,以克服PVDF膜表面疏水性。通过界面聚合反应,制备了基于MOF-199@GO改性PVDF的聚酰胺复合荷电纳滤膜。采用XRD、SEM、TEM、AFM和zeta电位等手段表征了MOF-199@GO复合材料及MOF-199@GO改性PVDF聚酰胺复合纳滤膜的结构及微观形貌,并测试了MOF-199@GO改性PVDF聚酰胺复合纳滤膜的脱盐性能。结果表明:通过MOF-199@GO复合材料对PVDF支撑膜的表面改性,有效克服了PVDF支撑膜的疏水性,实现了表面聚酰胺薄层的均匀连续生长,荷电纳滤膜表面荷负电性能显著增强,其中经MOF-199@GO充分改性的复合荷电纳滤膜表现出优异的脱盐性能,对MgSO4、Na2SO4、NaCl和MgCl2四种盐的截留率分别达到了93.56%、93.04%、87.48%和87.11%。  相似文献   

16.
As novel functional materials, metal-organic framework (MOF) and graphene oxide (GO) have received great attentions in recent years. In this work, MOF@GO nanocomposite (MOF-199@GO) is prepared by an in-situ growth method. A novel and highly efficient nanofiltration (NF) membrane can be facilely fabricated via surface decoration of MOF-199@GO onto poly(vinylidene fluoride) (PVDF) substrate before interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) in order to overcome the hydrophobicity of PVDF membrane. The structure and morphology of MOF-199@GO and MOF-199@GO modified PVDF polyamide composite membrane are characterized by XRD, SEM, TEM, AFM and zeta potential. MOF-199@GO modified PVDF composite NF membrane which possesses dense and uniform polyamide thin-layer exhibits higher negative surface potential (up to ~37 mV) at pH 9.5. The performance of MOF-199@GO modified PVDF polyamide composite NF membrane has been investigated by determination of pure water flux and salt rejection. The prepared NF membrane MG3 exhibited highly efficient rejection of MgSO4, Na2SO4, NaCl and MgCl2, which are 93.56%, 93.04%, 87.48% and 87.11%, respectively. This work provides a worthy reference for designing highly efficient NF membranes modified by MOF and relevant materials.  相似文献   

17.
Interactions between poly(maleic anhydride‐alt‐acrylic acid), [poly(MA‐alt‐AA)] and Cu2+, Ni2+, and Cd2+ ions were studied by UV–vis spectroscopy and viscosimetry. Effects of nature and the concentrations of the metal ions on the complex formation were investigated and the formation constants of each complex were determined by the mole‐ratio method. UV–vis studies showed that the complex formation tendency increased in the followed order: Cd(II) < Ni(II) < Cu(II). This order was confirmed by the Irving–William series and the Pearson's classification. The influence of metal ions on the reduced viscosity of poly(MA‐alt‐AA) increased in the following order: Cu(II) < Ni(II) < Cd(II), and this result was explained by the concentration effect. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2698–2705, 2004  相似文献   

18.
Utilizing an interfacial polymerization technique for the preparation of a polymeric composite nanofiltration membrane, both high permeation flux of water and high salt rejection can be achieved. Synthesis conditions, such as concentration of monomer, reaction time, and swelling agent, significantly affected the separation performance of composite membranes. The composite polyamide membrane had a permeation rate of ~2–5 gallon/ft2/day (gfd) and a salt rejection rate of ~94–99% when 2000 ppm aqueous salt solution was fed at 200 psi and 25°C. Also, a higher performance nanofiltration membrane could be prepared by suitably swelling the support matrix in the period of polymerization. The results of various feed concentrations showed that permeate flux decreased with increasing salt concentration in the feed solution. This result may be due to concentration polarization on the surface of polyamide membranes. The separation performance of polyamide membranes showed an almost independent relationship with operation pressure until it was up to 200 psi. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1112–1118, 2002  相似文献   

19.
The fungicidal monomer, N-acryloyl-2-(4′-thiazolyl) benzimidazole (AcTBZ) was synthesized from 2-(4′-thiazolyl) benzimidazole (TBZ) and acryloyl chloride in the presence of triethylamine in dry benzene at 30°C. The synthesized AcTBZ was identified by IR and 1H-NMR spectra. The homopolymers of AcTBZ were obtained using BPO as a thermal initiator in benzene under different experimental conditions such as various initiator concentrations or polymerization temperatures. The homopolymer of AcTBZ was also prepared using benzophenone as a photo initiator in DMF at 20°C. The average molecular weights (Mw ) of those poly(AcTBZ) s obtained were very low, being in the order of ca. 103. Copolymer of AcTBZ and polymer of AcTBZ and acrylic acid (AA) was synthesized with thermal or photo initiators. Poly(AcTBZ) and poly(AcTBZ-co-AA) were identified by IR and 1H-NMR spectra. The fungicidal activities of AcTBZ, poly(AcTBZ), and its polymers as well as TBZ against Aspergillus niger and Chaetomium globusum were very excellent compared to those of control polymers such as poly(AA) and poly(ethylene-co-vinyl acetate). The fungicidal activities were decreased in the order TBZ > AcTBZ > poly(AcTBZ) > poly(AcTBZ-co-AA) against both Aspergillus niger and Chaetomium globusum. The fungicidal activities of TBZ, and the synthesized AcTBZ and polymers containing AcTBZ were better against Chaetomium globusum than against Aspergillus niger. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The monomer, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic glycinyl imide(ETGI), was prepared by the Diels-Alder reaction of N-glycinylmaleimide and furan. Poly(ETGI), poly(ETGI-co-methacrylic acid)[poly(ETGI-co-MA)] and poly(ETGI-co-vinylacetate)[poly(ETGI-co-VAc)] were synthesized by photoinitiated homopolymerization of ETGI or copolymerizations of ETGI with MA and VAc. Synthesized ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were characterized by IR and 1H-NMR spectroscopies, elemental analysis, and gel permeation chromatography. The in vitro cytotoxicities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were evaluated using K-562 human leukemia cells and HeLa cells. In vitro cytotoxicity of monomer and polymers at a concentration of 1.0 mg/mL against K-562 human leukemia cells increased in the following order:poly(ETGI-co-MA) > poly(ETGI-co-VAc) > poly(ETGI) > Etgi. The cytotoxicities of copolymers against HeLa cells are less cytotoxic than ETGI at a dosage of 0.02, 1.0, and 5.0 mg/mL. The copolymers were very effective at any dosage tested. The in vivo antitumor activities of ETGI, poly(ETGI), poly(ETGI-co-MA), and poly(ETGI-co-VAc) were also evaluated against mice bearing sarcoma 180. In vivoantitumor activity of monomer and polymers at a dosage of 80 mg/kg increased in the following order: ETGI > poly(ETGI-co-VAc) > poly(ETGI-co-MA) > poly(ETGI) > 5-fluorouracil (5-FU).ETGI and polymers containing ETGI showed higher antitumor activity than 5-FU at any dosage tested. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号