首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stress corrosion cracking of austenitic chromium-nickel stainless steels at ambient temperature For the chloride-induced SCC with transgranular crack path in austenitic 18Cr10Ni stainless steel, a critical temperature between 45 and 50°C exists. This critical temperature, however, is valid only for the passive state of the steel in nearly neutral, chloride-containing aqueous environments. In the active state, SCC with transgranular crack mode can occur at temperatures down to ambient temperature. The active state is caused by highly acidic, high-chloride containing aqueous corrosive media. Adherent aqueous films with these properties can grow on the surface of structural components inside swimming-pools when the water is disinfected by addition of chlorine. Under these conditions, failure of austenitic CrNi and CrNiMo stainless steels by SCC with transgranular crack path at ambient temperature is possible and actually occurred. SCC with preferentially intergranular crack path can also occur at ambient temperature when austenitic stainless steels with a sensitized microstructure are used. Under these conditions, the corrosion attack is caused by non-specific aggressive environments, e.g., adherent aqueous films not containing chloride ions. The crack mode, intergranular or mixed, depends on the stress level.  相似文献   

2.
Extension measurements of exposed specimens of austenitic stainless steels in hot magnesium chloride solutions are interpreted with the potential-time curves. For austenitic stainless steels, it is very difficult to determine the yield point; it is necessary to study the stress-elongation curves at different elongation rates and to known the creep behaviour of the steels. In dead load stress corrosion tests the elongation-time curves allow the incubation time of stress corrosion cracks to be distinguished from the propagation time. The propagation time is more important than incubation time for the classification of the susceptibility of austenitic stainless steels to stress corrosion cracking, because the incubation time is more dependent on experimental procedure than is the propagation time. The stainless steel classification obtained was compared with a new test in which a load is applied and immediately taken off; after a rapid fall the potential-time behaviour provides information about the crack velocity.  相似文献   

3.
The stress- corrosion cracking (SCC) behavior of two alloys of titanium- modified austenitic stainless steels with different TiJC ratios in the 20% cold worked condition was studied in 45% boiling magnesium chloride (BP427 K) using the constant- extension rate testing (CERT) technique. The SCC susceptibility of the two titanium-modified alloys was assessed using the ratios of the values of ultimate tensile strength (UTS) and percent elongation in magnesium chloride and liquid paraffin, the susceptibility index (I), crack propagation rates (CPR), and stress ratios at different values of plastic strains. The results obtained on these alloys were compared with AISI type 316 stainless steel. It was observed that the two titaniummodified austenitic stainless steels had better SCC resistance than type 316 stainless steel, mainly due to their higher nickel content and, to a lesser extent, to the presence of titanium. Increasing the value of the TiJC ratio led to increased SCC resistance due to the availability of more free titanium in the solid solution. Fractography of the failed samples indicated failure by a combination of transgranular SCC and ductile fracture.  相似文献   

4.
马宏驰  吴伟  周霄骋  王亮 《表面技术》2018,47(11):126-133
目的 对比研究原始、固溶和敏化态的304和321奥氏体不锈钢在模拟加氢催化氯化铵环境中的应力腐蚀(SCC)行为及机理。方法 将304和321奥氏体不锈钢经过热处理制备成固溶和敏化态试样,采用U形弯试样在模拟加氢催化氯化铵环境中浸泡的应力腐蚀试验方法对其进行研究,通过观察U形弯弧顶的腐蚀形貌和开裂时间,并结合腐蚀及裂纹的SEM照片和电化学测试结果进行分析。结果 原始和固溶状态304不锈钢U形弯试样在氯化铵溶液环境中开裂时间为25 d左右,断口形貌分别为穿晶断口和沿晶断口;敏化态试样18 d后发生开裂,断口形貌为穿晶和沿晶的混合断口。原始和固溶态321不锈钢U形弯试样在该环境中经过39 d均无应力腐蚀裂纹;敏化试样经30 d后产生宏观开裂。电化学测试结果显示,不同热处理态的304不锈钢在氯化铵溶液中均具有明显的点蚀敏感性,321不锈钢在该环境中耐点蚀和应力腐蚀的能力优于304不锈钢。结论 不同状态的304不锈钢在高温氯化铵环境中具有较强的应力腐蚀倾向,特别是敏化态试样;321不锈钢在该环境中的应力腐蚀敏感性相对较小,但敏化处理显著增加了其沿晶应力腐蚀倾向,而固溶态试样具有明显的沿晶腐蚀特征。  相似文献   

5.
The change in the mechanism of stress corrosion cracking with test temperature for Type 304, 310 and 316 austenitic stainless steels was investigated in boiling saturated magnesium chloride solutions using a constant load method. Three parameters (time to failure; tf, steady-state elongation rate; lss and transition time at which a linear increase in elongation starts to deviate; tss) obtained from the corrosion elongation curve showed clearly three regions; stress-dominated, stress corrosion cracking-dominated and corrosion-dominated regions. In the stress corrosion cracking-dominated region the fracture mode of type 304 and 316 steels was transgranular at higher temperatures of 416 and 428 K, respectively, but was intergranular at a lower temperature of 408 K. Type 310 steel showed no intergranular fracture but only transgranular fracture. The relationship between log lss and log tf for three steels became good straight lines irrespective of applied stress. The slope depended upon fracture mode; −2 for transgranular mode and −1 for intergranular mode. On the basis of the results obtained, it was estimated that intergranular cracking was resulted from hydrogen embrittlement due to strain-induced formation of martensite along the grain boundaries, while transgranular cracking took place by propagating cracks nucleated at slip steps by dissolution.  相似文献   

6.
The stress corrosion cracking (SCC) of the commercial austenitic stainless steels, type 304 and type 316 has been extensively investigated as functions of applied stress, sensitizing temperature, sensitizing time and the environmental factors such as pH, anion concentration, anion species (chloride ions and sulfate ions), test temperature, applied potential and inhibitor concentrations of chromate and molybdate by using a constant load method. We have found that the steady state elongation rate obtained from corrosion elongation curve becomes a relevant parameter for predicting time to failure and also for criterion on assessment of whether SCC takes place or not. The value of tss/tf is also found to become an indicator for assessment of whether SCC takes place or not. Furthermore, from the results obtained, it is deduced that a unified SCC mechanism is qualitatively proposed to explain both of transgranular SCC (TGSCC) and intergranular SCC (IGSCC), where the unified SCC mechanism is basically based on a film rupture- formation event at crack tips.  相似文献   

7.
Creep effect on stress corrosion cracking of austenitic CrNi steels in boiling 35% magnesium chloride solution Potentiostatic and potentiodynamic polarization curves of steel X 5 CrNi 18 9 in 35% MgCl2-solution at 120° C do not show significant differences. Important for SCC tests is a narrow potential region before the onset of the potential of pit nucleation. SCC-experiments were carried out using two different techniques:
  • (a) loading in the electrolyte
  • (b) prestraining in air at 120° C; after transient creep the SCC test was initated.
Applying the technique described under (b) a decrease of SCC-susceptibility according to the crack nucleation expected in the slip dissolution model does not take place. Accordingly the dependence of time to failure on potential as well as on stress is found to be almost similar. Only in the absence of pitting a SCC threshold stress exists with its value in the range of yield strength. On the other hand SCC failure in the elastic region (< 0.1 σy) is observed when crack nucleation starts in corrosions pits.  相似文献   

8.
The objective of this paper is to propose a new intergranular hydrogen embrittlement mechanism of solution annealed austenitic stainless steels (types 304, 316 and 310) on the basis of the results already reported. An intergranular hydrogen embrittlement (IG-HE) took place for type 316 at potentials less noble than the open-circuit potential in a HCl solution, and for types 304 and 316 at a lower test temperature under an open-circuit condition in saturated boiling magnesium chloride solutions by using a constant load method, while type 310 suffered only a transgranular stress corrosion cracking (TG-SCC) in both solutions under the same experimental conditions, but not IG-HE. In addition, TG-SCC occurred for types 304 and 316 under an open-circuit condition in the HCl solution irrespective of test temperature and in saturated boiling magnesium chloride solutions at higher test temperatures. Thus, the occurrence of IG-HE depended upon the material and test temperature. The new IG-HE mechanism was developed that explains the results obtained in terms of martensite transformation, hydrogen-enhanced local plasticity (HELP), grain boundary sliding (GBS) and so on.  相似文献   

9.
Stress corrosion cracking on austenitic chromium nickel steels during active corrosion in chloride containing electrolytes Austenitic stainless steels may suffer from stress corrosion cracking (SCC) in chloride containing environments not only in the passive state of the materials and at elevated temperatures, but also under the conditions of active corrosion at ambient temperatures. This type of active SCC was investigated for 18/8 CrNi-steel in sulphuric acid-sodium chloride solutions by potentiostatically controlled experiments with stressed specimens. Critical potential ranges of susceptibility to SCC were evaluated. Comparison with potentiodynamically measured current-potential-curves shows that these critical potential ranges of SCC are identical with the potential ranges of active dissolution of unstressed specimens. Also in boiling 42% MgCl2, active SCC is observed in a narrow potential range more negative than the critical limiting potential of passive SCC. This range becomes more narrow by addition of Mo, but is extended by Ni. Incoloy 800 with about 32 wt.-% Ni shows exclusively active behaviour in the potential range interesting for testing the material in 42% MgCl2. Active SCC is at last caused by the formation of an incomplete protecting layer of adsorbed chloride ions which allows local differences of anodic dissolution, hereby in the presence of mechanical stresses making SCC failures possible. At potentials sufficiently negative, the thickness of the adsorption layer can increase and a macroscopic salt-layer is formed. The chemical composition of such a layer, formed in magnesium chloride, was investigated. The layer consists nearly exclusively of nickel chloride.  相似文献   

10.
Stress corrosion cracking behaviour of ferritic stainless steels with copper and molybdenum additions in 42?wt-% boiling magnesium chloride at 143?±?1°C has been determined. The nature of the corrosion products was analysed by X-ray photoelectron spectroscopy (XPS). XPS results show that the presence of Fe(0), Cr(0) and Mo(0) unoxidised states on the crack tips of (copper+molybdenum) addition ferritic stainless steel cannot form the stable passive film and causes the further corrosion in the chloride solution. The addition of both copper and molybdenum to 19% Cr ferritic stainless steel causes stress corrosion cracking. The susceptibility to stress corrosion cracking increases with the growth of ε-copper precipitates, and the fracture mode changes from transgranular to intergranular with the increasing aging time. Stress corrosion cracking initiates from pitting of ε-copper phases, then propagates to molybdenum atoms, and finally propagates to the other ε-copper precipitations perpendicular to the direction of maximum strain.  相似文献   

11.
采用慢应变速率拉伸(SSRT)试验方法研究了316Ti在300℃高温水中的应力腐蚀开裂(SCC)行为。结果表明,在空气饱和条件下,试样的断裂时间、延伸率以及断裂能的值随着Cl-浓度的增大显著降低,应力腐蚀敏感指数随着Cl-浓度的增大则显著递增,二者具有一定相关性。316Ti不锈钢在300℃空气饱和水中发生SCC的临界Cl-质量浓度为5 mg/L,只有在Cl-质量浓度高于或等于5 mg/L,试样才发生穿晶型和部分沿晶混合型SCC。SCC裂纹多萌生于滑移台阶或蚀坑,也可能萌生于接近表面的铁素体相处;裂纹在向基体扩展过程中,铁素体相的存在阻碍了其扩展过程,从而提高了316Ti的抗SCC能力。氧在SCC裂纹萌生和扩展过程中都起着非常重要的作用。  相似文献   

12.
Amplified discussion of the influence of Silicon and Molybdenum on the stress corrosion cracking proneness of austenitic and austeno-ferritic chrome-nickel steels Tests have been carried out in boiling magnesium chloride, calcium chloride, NaCl, water (150–200°C) and hot steam (500°C); in the two last-named cases, the tests were carried out with and without the addition of chloride and oxygen. The following materials were tested: steels with (per cent.) 17 and 17.5 Cr, 12–15.5 Ni, 0 and 2.5 Mo, 0 and 4 Si, less than 0.03 C, as well as steels with 20 and 21 Cr, 8—10 Ni, 0 and 2.5 Mo, 0 and 3 Si, 0, 1.5 CU, less than 0.05 C. Silicon has a favourable effect on the stress corrosion cracking behaviour in magnesium chloride and also in calcium chloride, but a detrimental effect in NaCl and water. Its probable effect is to inhibit the extension of the crack by crystallographic obstacles and, later, by the formation of a surface film of poor conductivity (where Mo also plays a part). The attempt is made to interpret this behaviour on the strength of electro-chemical investigations; in this connection, renewed critical reservations are made in respect of the test in magnesium chloride.  相似文献   

13.
Semi-hard tubes of deoxidized high phosphorous copper with different levels of tangential residual stresses have been exposed to nitrite solutions in a laboratory heating circuit. After characterization of investigated materials influence of temperature, location of heating, concentration of solution, electrochemical potential, and atmosphere on stress corrosion cracking susceptibility of those copper tubes has been investigated. Threshold stress for crack initiation has been determined. Maximum duration of experiments was 1 month. Breakthrough time of tubes has been measured as criterion for susceptibility to SCC.To vary stress level in a wider range constant load tests on tubes with different degrees of cold working (annealed, semi-hard, hard) were done by mounting them in a steel frame.Stress corrosion cracks were always intergranular. A tenorite layer covered surface of cracked copper tubes. A reaction scheme for ammonia formation is presented. Necessary conditions for formation of stress corrosion are shown and critically discussed.Results show that intergranular cracking takes place at much lower stress levels below yield strength when compared to literature data on transgranular cracking above yield strength. For transgranular cracking cross slipping and cleavage formation as cracking mechanism is confirmed while for intergranular cracking chemical dissolution of grain boundaries plays a more important role.  相似文献   

14.
采用恒载荷法、恒应变法研究了22Cr双相不锈钢在不同Cl-浓度、不同温度的氯化物渗液中耐应力腐蚀的性能,并与316L和304L普通奥氏体不锈钢进行了对比.结果表明,22Cr双相不锈钢在氯化物环境中具有更好的应力腐蚀破裂(SCC)抗力.  相似文献   

15.
The effects of nitrogen content and the cooling rate on the reformation of austenite in the Gleeble simulated heat-affected zone (HAZ) of 2205 duplex stainless steels (DSSs) were investigated. The variation of stress corrosion cracking (SCC) behavior in the HAZ of 40 wt% CaCl2 solution at 100 °C was also studied. Grain boundary austenite (GBA), Widmanstatten austenite (WA), intergranular austenite (IGA) and partially transformed austenite (PTA) were present in the HAZ. The types and amounts of these reformed austenites varied with the cooling rate and nitrogen content in the DSS. U-bend tests revealed that pitting corrosion and selective dissolution might assist the crack initiation, while the types and amounts of reformed austenite in the HAZ affected the mode of crack propagation. The presence of GBA was found to promote the occurrence of intergranular stress corrosion cracking. WA, IGA and PTA were found to exhibit a beneficial effect on SCC resistance by deviating the crack propagation path.  相似文献   

16.
The effect of temperature on both the transgranular and the intergranular stress corrosion crack velocity of silver–gold alloys in a 1 M KCl solution was studied for temperatures ranging from 25 to 80 °C by means of slow strain rate experiments. At a constant potential and a constant elongation rate, the crack propagation rate was higher the higher the temperature. Transgranular stress corrosion cracking (TGSCC) velocity was found to change with the temperature, as well as with the potential, in the same way as intergranular stress corrosion cracking (IGSCC) velocity. In the region of potentials where the crack velocity was not controlled by ion diffusion in the crack, it was concluded that TGSCC and IGSCC for Ag–Au alloys in KCl solutions were controlled by the same stress corrosion cracking mechanism.  相似文献   

17.
The stress corrosion cracking of carbon steels in a number of environments (nitrates, hydroxides, carbonates, chlorides and liquid ammonia) has been studied by scanning electron microscopy. The crack path depends on both heat treatment and environmental conditions. In annealed steels it appears that solutions which produce thick corrosion products induce intergranular cracking, while in solutions where adsorption induced inhibition occurs or thin films form, cracking is transgranular. Although the available fractographic evidence is ambiguous, it appears to rule out either hydrogen embrittlement or brittle films as being important in crack propagation. However, the fracture surface morphologies are consistent with the cracks propagating by anodic dissolution, possibly aided by mechanical tearing.  相似文献   

18.
The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.  相似文献   

19.
Compact tension specimens of nitrogen‐added AISI type 316 austenitic stainless steel and its weld metal were subjected to stress corrosion cracking (SCC) testing in a boiling solution containing 5 M sodium chloride + 0.15 M sodium sulphate + 2.5 ml/l hydrochloric acid solution using the constant extension rate testing (CERT) technique. The extension rate of testing was 10 microns per hour. The threshold values of stress intensity factor (KISCC) and J‐integral (JISCC) were taken as those values of KI and JI at which about 25 microns of SCC crack growth was observed. These threshold values were about four times higher and plateau crack growth rates (PCGR) were nearly one order of magnitude lower for the base metal vis‐à‐vis the weld metal. Fractographic observations indicated failure by transgranular SCC (TGSCC) of austenite in both the base and weld metal. No stress‐assisted dissolution of delta‐ferrite or its interface with austenite, was observed.  相似文献   

20.
Intergranular corrosion cracks of a X6CrNiTi1810 SS expansion bellow stressed in heated steam/steam condensate at elevated temperature Cracking of a single layer corrugated expansion bellow of titanium-stabilized austenitic chromium nickel stainless steel was caused by corrosion fatigue. The crack starts with an intergranular crack path, and the transgranular residual fracture shows striations. Similar manifestations of cracked surfaces of austenitic CrNi steel which were obtained under cyclic loading in MgCl2 solution are described in the literature. There are, however, corrosion damages by intergranular crack formation in the non-sensitized microstructure of titanium-stabilized ferritic chromium and austenitic chromium-nickel stainless steels in water at elevated temperature, the causes of which have not been elucidated until now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号