首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates contention resolution schemes for optical packet switching networks from an end-to-end perspective, where the combined exploitation of both core routers and edge routers are highlighted. For the optical-core network, we present the architecture of an optical router to achieve contention resolution in wavelength, time, and space domains. Complementing the solution involving only the core router intelligences, we propose performance enhancement schemes at the network edge, including a traffic-shaping function at the ingress edge and a proper dimensioning of the drop port number at the egress edge. Both schemes prove effective in reducing networkwide packet-loss rates. In particular, scalability performance simulations demonstrate that a considerably low packet-loss rate (0.0001% at load 0.6) is achieved in a 16-wavelength network by incorporating the performance enhancement schemes at the edge with the contention resolution schemes in the core. Further, we develop an field-programmable gate-array (FPGA)-based switch controller and integrate it with enabling optical devices to demonstrate the packet-by-packet contention resolution. Proof-of-principle experiments involving the prototype core router achieve an error-free low-latency contention resolution.  相似文献   

2.
This paper presents theoretical design, network simulation, implementation, and experimental studies of optical packet routing systems supporting variable-length packets. The optical packet switching network exploits unified contention resolution in core routers in three optical domains (wavelength, time, and space) and in edge routers by traffic shaping. The optical router controller and lookup table, implemented in a field-programmable gate array (FPGA), effectively incorporates the contention resolution scheme with pipelined arbitration of asynchronously arriving variable-length packets. In addition, real-time performance monitoring based on the strong correlation between the bit-error rates of the optical label and those of the data payload indicates its application in optical time-to-live detection for loop mitigations. Successful systems integration resulted in experimental demonstration of the all-optical packet switching system with contention resolution for variable-size packets.  相似文献   

3.
This article presents an optical label switching technology geared toward the next-generation Internet, and highlights its promising potential to accommodate packet, burst, and circuit traffic in a unified optical layer. In particular, we provide detailed discussions on an architecture design for a high capacity optical label switching router by considering enabling optical technologies. In pursuit of an effective contention resolution scheme, we investigate an end-to-end solution by incorporating a traffic shaping function at the network edge with wavelength, time, and space dimensions contention resolution in the core network. Experimental results indicate that this scheme is capable of achieving very low packet loss rates. Furthermore, due to its natural compatibility with GMPLS architecture, optical label switching has great potential for a seamless upgrade of today's optical networks toward the next generation Internet.  相似文献   

4.
The author proposes, for future wavelength-division-multiplexing (WDM) optical networks, new wavelength routers with reduced losses and improved wavelength response. This paper focuses on the most general type of wavelength router, the N/spl times/N router. This device is particularly attractive in a metropolitan network, where a star arrangement based on the N/spl times/N router allows the network configuration (the wavelength path of each signal) to be varied and managed in a simple fashion. The N/spl times/N router has been shown to be suitable for both packet and circuit switching. In particular, ultrahigh-capacity IP routers have been demonstrated by using fast tunable lasers and burst mode receivers.  相似文献   

5.
Optical networks have been extensively investigated in recent years to provide high capacity for the Internet traffic. Among them the optical packet-switching network deploying buffering, wavelength conversion and multipath routing could be the most suitable one. It cannot only provide high capacity transport for Internet traffic but also achieve high utilization of the network resources. However due to the packet-oriented routing and switching, such a network can result in a large amount of packets out-of-order, packet loss and/or with various delays upon arriving at end systems, causing TCP flows that comprise those packets corrupted. Large amount of corrupted flows can increase the burstiness of the Internet traffic and cause higher-layer protocol to malfunction. This paper presents a novel routing and switching method for optical IP networks-flow routing. Without using a complicate control mechanism flow routing deals with packet-flows to reduce the amount of corrupted flows. The performance of the wavelength-converted optical flow router is investigated, based on a novel analytical model. A performance metric, i.e., good-throughput, is used, measuring the ratio of the amount of packets comprised in the noncorrupted flows to total amount of packets. Comparing with optical packet-switching routers, a remarkable improvement of good-throughput can be obtained by using optical flow routers. More important, using wavelength conversion can greatly improve the good-throughput of optical flow routers.  相似文献   

6.
Integration of multiprotocol label switching functions and multiprotocol lambda switching functions can enhance the throughput of IP networks and remove bottlenecks that are derived from electrical packet processing. To enhance the packet forwarding capability, NTT proposed a photonic MPLS concept that includes MP/spl lambda/S, and demonstrated IP, MPLS, and photonic MPLS integrated router systems called the photonic MPLS router. This router system is now called the Hikari router. The word Hikari is Japanese meaning beam, light, lightwave, optical, photonic, and sunshine. The amount of IP data traffic has grown remarkably. Massive IP routers and flexible route control mechanisms are now required to cope with the increased amount of traffic. The Hikari router can offer two solutions utilizing photonic switching technologies, and photonic network operation and management technologies. The first solution is utilizing photonic switching technologies realized using optical-switch-based crossconnect systems. The other solution is realized using the MPLS and MP/spl lambda/S signaling protocol and photonic network protection functions. In this article we report on the implementation of the Hikari router systems, propose a newly developed disjoint path selection scheme for generalized MPLS networks with shared risk link group constraints, and demonstrate the signaling protocol and network protection functions. The demonstration system achieves a distributed optical path set-up/tear-down protocol with an extended constraint-based routing label distribution protocol. Fast self-healing through automatic protection switching and a new restoration scheme are also implemented. These functions are successfully implemented, and the performance is verified on a demonstration network. The protection switching scheme achieves protection in less than 20 ms, and the optical path restoration scheme achieves restoration in less than 500 ms.  相似文献   

7.
This paper reviews advanced optical burst switching (OBS) and optical packet switching (OPS) technologies and discusses their roles in the future photonic Internet. Discussions include optoelectronic and optical systems technologies as well as systems integration into viable network elements (OBS and OPS routers). Optical label switching (OLS) offers a unified multiple-service platform with effective and agile utilization of the available optical bandwidth in support of voice, data, and multimedia services on the Internet Protocol. In particular, OLS routers with wavelength routing switching fabrics and parallel optical labeling allow forwarding of asynchronously arriving variable-length packets, bursts, and circuits. By exploiting contention resolution in wavelength, time, and space domains, the OLS routers can achieve high throughput without resorting to a store-and-forward method associated with large buffer requirements. Testbed demonstrations employing OLS edge routers show high-performance networking in support of multimedia and data communications applications over the photonic Internet with optical packets and bursts switched directly at the optical layer  相似文献   

8.
Because pure electrical routers with their bandwidth limitations can hardly keep up with the tremendous traffic growth in the Internet, optical routers based on various optical switching techniques including optical wavelength switching (OWS), optical burst switching (OBS), and optical packet switching (OPS) have been suggested to cope with this problem. However, because OBS and OPS are both in their early experimental phase and OWS only provides coarse granularity switching, a hybrid-switching optical router with combined OWS and electrical packet switching is a necessity in order to accommodate the entire multi-granularity traffic with multi-service requirements in a cost-effective manner. Its coordination capability of optical circuit switching and electrical packet switching enables efficient/intelligent usage of network resources. In this paper, we first review research and developments of such IP routers employing optical switching/interconnection techniques and examine how these techniques can be used inside routers to scale node capacity and to improve optical Internet performance. We also present and study the performance of a terabit optical router with an optical-electrical hybrid-switching fabric. The node architecture is based on the idea of IP over WDM integration with Generalized Multi-Protocol Label Switching (GMPLS). The network-level performance evaluations show that the proposed hybrid-switching optical router is a cost-effective solution for building the next generation GMPLS-based multi-granularity optical Internet.  相似文献   

9.
Optical burst switching (OBS) is emerging as one promising switching paradigm for the next generation optical networks. To support multiple services in burst-switching networks, the OBS paradigm should support some quality-of-service (QoS) provisioning. A major design issue in such networks is to reduce the blocking probability of the bursts arising due to resource contention at the intermediate core router. In this paper, we propose a signaling protocol which we call ‘Delay-on-Demand’ (OBS-DoD), to reduce blocking probability and support QoS in optical burst-switching networks. The proposed scheme guarantees that at least one of the bursts succeeds depending on its priority, propagation delay from the ingress router, and the burst-size when contention occurs at the core router. For this, we use a control packet to delay, in case of a contention, the transmission of bursts at the ingress router. We compare the performance of our proposal, by simulation, with an earlier proposed scheme, and show that the proposed OBS-DoD outperforms the earlier scheme in reducing the blocking probability. For simulation, we generated bursty traffic using an M/Pareto distribution.  相似文献   

10.
Next generation routers   总被引:14,自引:0,他引:14  
As the broadband access technologies, such as DSL, cable modem, and gigabit Ethernet, are providing affordable broadband solutions to the Internet from home and the enterprise, it is required to build next generation routers with high-speed interfaces (e.g., 10 or 40 Gb/s) and large switching capacity (e.g., multipetabit). This paper first points out the issues of building such routers, such as memory speed constraint, packet arbitration bottleneck, and interconnection complexity. It then presents several algorithms/architectures to implement IP route lookup, packet classification, and switch fabrics. Some of the functions, such as packet classification, route lookup, and traffic management, can be implemented with emerging network processors that have the advantages of providing flexibility to new applications and protocols, shortening the design cycle and time-to-market, and reducing the implementation cost by avoiding the ASIC approach. Several proposed algorithms for IP route lookup and packet classification are compared in respect to their search/update speeds and storage requirements. Different efficient arbitration schemes for output port contention resolution are presented and analyzed. The paper also surveys various switch architectures of commercial routers and switch chip sets. At the end, it outlines several challenging issues that remain to be researched for next generation routers  相似文献   

11.
This paper presents the recent achievements and main results of the optical packet switching node with label swapping capabilities that was developed in the framework of the IST-LABELS project. The implemented functionalities allows the routing and forwarding of optical packets at 10 Gb/s based on the information conveyed in the 18 GHz-subcarrier multiplexed (SCM) label at 155 Mb/s. Specific functions of the optical packet switching demonstrator such as label extraction and rewriting are based on high-performance fiber Bragg grating filters (FBG) whereas semiconductor optical amplifier (SOA) based wavelength conversion allows payload 2R regeneration. Advanced aspects implemented in the high speed electronic control unit such as traffic shaping, multicast, and for the first time to our knowledge, a contention resolution algorithm with priority processing are thoroughly described in this paper. This paper also presents simulations exploring the effect of these advanced features in the global performance of an optical packet switched network. In particular, we found that the contention resolution algorithm based on parallel converters with 16 wavelengths contributes to improve up to four orders of magnitude the packet loss rate for low traffic loads whereas the improvement from traffic shaping policies was of 1 order of magnitude for both low and medium traffic loads. Along with the experimental results, the feasibility of the approach as the basis for the next generation internet networks is demonstrated.  相似文献   

12.
Presently, optical burst switching (OBS) technology is under study as a promising solution for the backbone of the optical Internet in the near future because OBS eliminates the optical buffer problem at the switching node with the help of no optical/electro/optical conversion and guarantees class of service without any buffering. To implement the OBS network, there are a lot of challenging issues to be solved. The edge router, burst offset time management, and burst assembly mechanism are critical issues. In addition, the core router needs data burst and control header packet scheduling, a protection and restoration mechanism, and a contention resolution scheme. In this paper, we focus on the burst assembly mechanism. We present a novel data burst generation algorithm that uses hysteresis characteristics in the queueing model for the ingress edge node in optical burst switching networks. Simulation with Poisson and self‐similar traffic models shows that this algorithm adaptively changes the data burst size according to the offered load and offers high average data burst utilization with a lower timer operation. It also reduces the possibility of a continuous blocking problem in the bandwidth reservation request, limits the maximum queueing delay, and minimizes the required burst size by lifting up data burst utilization for bursty input IP traffic.  相似文献   

13.
This paper presents a new technology for constructing IP over photonic systems. An IP with multiprotocol label switching (MPLS) over wavelength division multiplexing (WDM)-based broad-band IP network architecture and protocol is proposed and analyzed in this paper, which supports variable-length IP-like optical packet label switching and optical virtual path routing. This system tries to merge into one layer the functionalities of the wavelength switching, SONET mux/demux, and IP routing, and is sometimes known as the concept of optical MPLS. The label banding, forwarding/switching process, and node architecture of the proposed network are discussed and studied. A unique as well as important function of a lambda/label edge router (LER) is a flow assembly device that can encompass MPLS' forward equivalence classes, label stacking, and label switching path aggregation function. At the same time, a particular function of the core label switching router is wavelength merging. A fiber delay line is used to delay the data stream in order to process the label information and resolve contention. Transmission bit error rate measurements of the baseband data stream and back-to-back is also demonstrated to show its feasibility  相似文献   

14.
The rapid increase of Internet traffic is pushing the deployment of WDM technology in the next-generation high-speed Internet backbone. Routers in the backbone could still be the potential bottleneck. In this article we consider some design issues of high-throughput optical routers which combine the advantages of WDM with the new optical switching technology. We first introduce a proposed Internet architecture based on the optical burst switching mechanism. Some important design issues in optical buffering and control function are addressed which are expected to have significant effects on router performance. Numerical results of a simulation study are also presented along with discussions  相似文献   

15.
Telecommunication networks are experiencing a dramatic increase in demand for capacity, much of it related to the exponential takeup of the Internet and associated services. To support this demand economically, transport networks are evolving to provide a reconfigurable optical layer which, with optical cross-connects, will realize a high-bandwidth flexible core. As well as providing large capacity, this new layer will be required to support new services such as rapid provisioning of an end-to-end connection under customer control. The first phase of network evolution, therefore, will provide a circuit-switched optical layer characterized by high capacity and fast circuit provisioning. In the longer term, it is currently envisaged that the bandwidth efficiency associated with optical packet switching (a transport technology that matches the bursty nature of multimedia traffic) will be required to ensure economic use of network resources. This article considers possible network application scenarios for optical packet switching. In particular, it focuses on the concept of an optical packet router as an edge network device, functioning as an interface between the electronic and optical domains. In this application it can provide a scalable and efficient IP traffic aggregator that may provide greater flexibility and efficiency than an electronic terabit router with reduced cost. The discussion considers the main technical issues relating to the concept and its implementation  相似文献   

16.
Optical burst switching (OBS) is a proposed new communications technology that seeks to expand the use of optical technology in switching systems. However, many challenging issues have to be solved in order to pave the way for an effective implementation of OBS. Contention, which may occur when two or more bursts compete for the same wavelength on the same link, is a critical issue. Many contention resolution methods have been proposed in the literature but many of them are very vulnerable to network load and may suffer severe loss in case of heavy traffic. Basically, this problem is due to the lack of information at the nodes and the absence of global coordination between the edge routers. In this work, we propose another approach to avoid contention and decrease the loss. In this scheme, the intermediate nodes report the loss observed to the edge nodes so that they can adjust the traffic at the sources to meet an optimal network load. Furthermore, we propose a combination of contention reduction through congestion control and bursts retransmission to eliminate completely bursts loss. This new approach achieves fairness among all the edge nodes and enhances the robustness of the network. We also show through simulation that the proposed protocol is a viable solution for effectively reducing the conflict and increasing the bandwidth utilization for optical burst switching.  相似文献   

17.
A burst assembly scheme at the edge routers in optical burst switched networks (OBSNs) is presented for setting up more universal, realistic, and high-powered networks. For the first time, the concept of unit input bit rate is introduced to improve universality. In addition, various factors limiting burst length are discussed, while considering service requirement and hardware architectures. Then, a novel burst assembly algorithm with a buffer safety space is proposed. Based on the above, the assembly process in optical burst switching at edge routers is simulated, and its influence on burst creation, burst length distribution, packet loss ratio, total output data, and valid data ratio are discussed. The results show that the scheme can provide more efficient QoS guarantee in optical burst switched networks, even for 32 random packet sources at an edge router, the packet loss ratio is to 5 × 10−5, and the valid data ratio reaches 99.7%.  相似文献   

18.
With the tremendous introduction of internet protocol (IP) applications, the quality-of-service (QoS) becomes more and more an emergent issue. Concrete solutions can be adopted (IP/ATM/SONET/WDM) opening the way to new types of applications (interactive applications through the exploitation of voice and video) in a short-term approach. However, all the telecommunication community tries to provide new solutions offering capacity and flexibility in a simpler manner. In this paper, we present the concepts of a multiservice optical network studied in the framework of a French Research Program. The QoS could be offered through the combined exploitation of electronic memories in the edges and optical resources in the core of the optical network and through the coexistence of different types of connections. In particular, the traffic shaping in the edges is highlighted through simulation and demonstrates the real impact of this function to maintain the logical performance at its highest level. To propose concrete solutions for its implementation, two network scenarios are proposed. The first one, for the backbone, exhibits a novel optical packet switching architecture taking benefit of the massive presence of wavelengths to solve the contention. The second one, for the metro, shows a second optical packet switching architecture really adapted to the cost constraints (upgradability, compactness, granularity)  相似文献   

19.
光突发交换网络的突发包组装和调度   总被引:3,自引:0,他引:3  
光突发交换(OBS)由于结合了光线路交换和光分组交换的优点并且改进了两者的不足之处,成为实现IP over WDM的重要手段。主要研究实现光突发包在边缘路由器的组装生成和调度机制。通过模拟的方法研究边缘路由器的输出性能,包括输出流量的形状和时延特性。结果显示,不同服务等级的时延要求可以通过组装控制输出流的最大时延得以保证。同时边缘路由器组装和分配信道缓冲区设置和优先分配机制可以影响到输出光突发包的长度和突发度。  相似文献   

20.
基于区分服务的边缘路由器的服务质量   总被引:1,自引:0,他引:1       下载免费PDF全文
Internet real-time multimedia communication brings a further challenge to Quality of Service (QoS). A higher QoS in communication is required increasingly. As a new framework for providing QoS services, Differentiated Services (DiffServ) is undergoing a speedily standardization process at the IETF. DiffServ not only can offer classified level of services, but also can provide guaranteed QoS in a certain extent. In order to provide QoS, DiffServ must be properly configured. The traditional DiffServ mechanism provides classifier for edge router to mark the different traffic streams, and then the core router uses different Drop Packet Mechanisms to drop packets or transmit data packets according to these classified markers. When multiple edge routers or other core routers transmit data packets high speedily to a single core router, the core router will emerge bottleneck bandwidth. The most valid solution to this problem is that the edge router adopts drop packet mechanism. This paper proposes an Modified Edge Router Mechanism that let the edge router achieve marking, dropping and transmitting packets of hybrid traffic streams based on DiffServ in a given bandwidth, the core router will only transmits packets but won't drop packets. By the simulation of ns2, the modified mechanism ensure the QoS of high priority traffics and simplify the core router, it is a valid method to solve the congestion of the core router.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号