首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renewed interest exists in using grass forages to dilute the higher crude protein (CP) and lower digestible fiber present in legumes fed to lactating dairy cows. A 3 x 3 Latin square feeding study with 4-wk periods was conducted with 24 Holstein cows to compare ryegrass silage, either untreated control or macerated (intensively conditioned) before ensiling, with alfalfa silage as the sole dietary forage. Ryegrass silages averaged [dry matter (DM) basis] 18.4% CP, 50% neutral detergent fiber (NDF), and 10% indigestible acid detergent fiber (ADF) (control) and 16.6% CP, 51% NDF, and 12% indigestible ADF (macerated). Alfalfa silage was higher in CP (21.6%) and lower in NDF (44%) but higher in indigestible ADF (26%). A lower proportion of the total N in macerated ryegrass silage was present as nonprotein N than in control ryegrass and alfalfa silages. Diets were formulated to contain 41% DM from either rye-grass silage, or 51% DM from alfalfa silage, plus high moisture corn, and protein concentrates. Diets averaged 17.5% CP and 28 to 29% NDF. The shortfall in CP on ryegrass was made up by feeding 7.6% more soybean meal. Intake and milk yields were similar on control and macerated ryegrass; however, DM intake was 8.3 kg/d greater on the alfalfa diet. Moreover, feeding the alfalfa diet increased BW gain (0.48 kg/d) and yield of milk (6.1 kg/d), FCM (6.8 kg/d), fat (0.26 kg/d), protein (0.25 kg/d), lactose (0.35 kg/d), and SNF (0.65 kg/d) versus the mean of the two ryegrass diets. Both DM efficiency (milk/DM intake) and N efficiency (milk-N/N-intake) were 27% greater, and apparent digestibility was 16% greater for DM and 53% greater for NDF and ADF, on the ryegrass diets. However, apparent digestibility of digestible ADF was greater on alfalfa (96%) than on ryegrass (average = 91%). Also, dietary energy content (estimated as net energy of lactation required for maintenance, milk yield, and weight gain) per unit of digested DM was similar for all three diets. Results of this trial indicated that, relative to ryegrass silage, feeding alfalfa silage stimulated much greater feed intake, which supported greater milk production.  相似文献   

2.
The net energy of lactation (NEL) concentration of forages is important for formulating diets. The equations presently used to estimate NEL of alfalfa are based on limited data. Our objective was to determine whether a larger database would provide more relevant equations. One hundred eighty samples of alfalfa were taken over four cuttings and 2 yr, combined into 45 composites and analyzed for neutral detergent fiber, acid detergent fiber (ADF), and in vitro true digestibility. Finally, NEL values were estimated using neutral detergent fiber and in vitro true digestibility. Prediction equations were obtained by regressing NEL upon ADF concentration. Changes in NEL with age of alfalfa at harvest differed with year and cutting. Estimation of NEL would be more accurate with equations specific for cutting and year, but such an approach would be difficult to use in practice. When data were pooled across years, four cutting-specific equations were obtained; these had different intercepts and slopes and gave different NEL values for a given ADF content. Differences among estimates of NEL increased as ADF increased. Data were combined across years and cuttings to give an overall equation that was similar to published prediction equations. Compared with NEL values from the cutting-specific equations, the overall equation underestimated NEL for first cutting alfalfa and overestimated NEL of second cutting alfalfa. A lack of precision in estimating NEL could equate to 1.5 to 2.5 kg of milk/d. Cutting specific equations should be used to estimate the NEL of first- and second-cutting alfalfa; NEL of the third and fourth cuttings could be estimated using an overall equation.  相似文献   

3.
The objective was to determine the influence of alfalfa silage particle length on milk yield, milk composition, and chewing activity. Sixteen multiparous lactating Holsteins were used in each of two separate feeding trials over a 2-yr period providing two repetitions. Each trial was based on 4 x 4 Latin squares with 21-d periods. All four diets (2-yr average, dry basis) contained a basal level of 10.7% neutral detergent fiber from corn silage and 2.3% neutral detergent fiber from chopped alfalfagrass hay. One of the diets served as a low forage, low fiber control and contained only the basal forages. The other three diets contained an additional 8.6% neutral detergent fiber from coarser alfalfa silage, finely rechopped alfalfa silage or an equal mixture ofthe two. An increase in the forage content above the basal amount using alfalfa silage increased 4% fat-corrected milk yield, milk fat yield and concentration, eating time, and total chewing time. Dry matter intake was not influenced by diet. Linear increases in rumination and total chewing times were observed as the mean particle size of the alfalfa silage increased from finer to coarser. There was no linear effect of alfalfa silage particle size on milk yield, 4% fat-corrected milk yield, dry matter intake, or milk composition.  相似文献   

4.
A study was conducted to investigate the response to supplemental tallow of lactating cows fed basal diets with different alfalfa silage:corn silage ratios. We postulated that supplemental tallow will have decreasing negative effects on rumen fermentation, dry matter intake (DMI), and milk fat percentage as the dietary ratio of alfalfa silage:corn silage is increased. Eighteen Holstein cows averaging 134 +/- 14 d in milk were used in a replicated 6 x 6 Latin square design with 21-d periods. Treatments were arranged as a 2 x 3 factorial with 0 or 2% tallow (DM basis) and three forage treatments: 1) 50% of diet DM as corn silage, 2) 37.5% corn silage and 12.5% alfalfa silage, and 3) 25% corn silage and 25% alfalfa silage. Cows were allowed ad libitum consumption of a total mixed ration. Diets were formulated to contain 18% crude protein and 32% neutral detergent fiber. No fat x forage treatment interactions were observed. Fat supplemented cows had lower DMI and produced more milk with less milk fat content relative to non-supplemented cows. Concentration of trans-octadecenoic acids was higher in milk fat of tallow-supplemented cows. Tallow supplementation had no effect on ruminal pH and acetate:propionate ratio, but tended to decrease total volatile fatty acid (VFA) concentration in the rumen. Increasing the proportion of alfalfa silage increased DMI, milk fat percentage, and milk fat yield regardless of the fat content of the diet. Total VFA concentration and acetate:propionate ratio in the rumen were increased in response to higher levels of alfalfa in the diets. These results suggest that replacing corn silage with alfalfa silage did not alleviate the negative response of dairy cows to tallow supplementation at 2% of diet DM.  相似文献   

5.
Inclusion of hemicellulose extract (HE) in cattle diets have shown potential for improving fiber digestibility and production efficiency. The objective of this research was to evaluate production and digestibility effects of a HE on midlactation cows. Twelve multiparous Holstein cows (142 ± 44 d in milk, 685 ± 19 kg of body weight) including 4 with ruminal fistula were used in a 2 × 2 Latin square design with 21-d periods. Cows were fed a control (CON) diet containing 55% forage [dry matter (DM) basis, 2/3 corn silage and 1/3 alfalfa hay] or a similar diet where 1.0% of the diet DM was replaced with HE (TRT). Dry matter intake averaged 27.1 and 26.9 kg/d, for CON and TRT respectively, and was not affected by addition of extract. The percentage of milk protein (3.40 vs. 3.29%) was greater, whereas the percentage of milk fat (3.91 vs. 3.80%) tended to be greater, for cows fed the CON compared with the TRT diet. Because of numerically greater milk production (38.8 vs. 39.2 kg/d) for cows fed the TRT diet, no differences were observed in component yields other than lactose (1.86 vs. 1.94 kg/d), which tended to be greater for cows fed the TRT ration. Treatment improved neutral detergent fiber (NDF) digestibility (38.6 vs. 48.1%) for the TRT diet compared with the CON diet but did not affect apparent total-tract DM (67.8 vs. 68.5%), crude protein (67.2 vs. 67.9%), acid detergent fiber (ADF; 37.1 vs. 43.3%), or starch (92.8 vs. 92.2%) digestibility. For in situ determinations, Dacron bags containing corn silage, alfalfa hay, and either the CON or TRT ration were incubated in triplicate in the rumens of the cannulated cows at 0, 3, 6, 9, 12, 24, and 48 h on d 18 of each period. Each total mixed ration was incubated only in cows assigned to the corresponding diet. For corn silage, the rate of disappearance of NDF (1.70 vs. 4.27%) and ADF (1.79 vs. 4.66%) increased for cows fed the TRT diet. For alfalfa hay, the disappearance of fraction A of DM, NDF, and ADF decreased and fraction B of DM and NDF increased with treatment. The rate of disappearance for DM (8.03 vs. 11.04%), NDF (6.30 vs. 10.28%), and ADF (5.52 vs. 9.19%) increased for the alfalfa hay in rumens of treated cows. For the total mixed ration, the disappearance of the A fraction of NDF and ADF increased for cows fed the TRT diet. Supplementing diets of lactating dairy cows with an HE has beneficial effects on fiber degradation characteristics and provides opportunities for improving animal performance.  相似文献   

6.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

7.
Sixteen multiparous Holstein cows past peak lactation were used in a 4 x 4 Latin square design replicated four times to determine the production response and digestibility of diets containing high fiber energy supplements. Corn gluten feed, soybean hulls, or wheat middlings were substituted for a portion of corn, soybean meal, and corn silage in the control diet to provide 22% of the total dietary DM. Intake of DM was decreased when cows consumed wheat middlings compared with control and soybean hulls. Actual milk and SCM yields and milk fat percentage were not different among treatments. Milk protein percentage was greater when cows consumed corn gluten feed compared with soybean hulls. Apparent digestibility of DM was greater when cows consumed soybean hulls compared with wheat middlings. Intake and apparent digestibility of ADF and NDF were greater when cows consumed soybean hulls. Cows consuming wheat middlings had intermediate intake and decreased apparent digestibility of NDF compared with controls. Intake and apparent digestibility of NDF were not different when cows received corn gluten feed compared with control or wheat middlings. High fiber energy supplements supported milk production equally; however, differences in DM and nutrient intake, milk composition, and nutrient apparent digestibility were significant.  相似文献   

8.
A 3-part study was conducted to evaluate the effect of a developmental fibrolytic enzyme additive on the digestibility of selected forages and the production performance of early-lactation dairy cows. In part 1, 4 replicate 24-h batch culture in vitro incubations were conducted with alfalfa hay, alfalfa silage, and barley silage as substrates and ruminal fluid as the inoculum. A developmental fibrolytic enzyme additive (AB Vista, Marlborough, UK) was added at 5 doses: 0, 0.5, 1.0, 1.5, and 2.0 μL/g of forage dry matter (DM). After the 24-h incubation, DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) disappearance were determined. For alfalfa hay, DM, NDF, and ADF disappearance was greater at the highest dosage compared with no enzyme addition. Barley silage NDF and ADF and alfalfa silage NDF disappearance tended to be greater for the highest enzyme dosage compared with no enzyme addition. In part 2, 6 ruminally cannulated, lactating Holstein dairy cows were used to determine in situ degradation of alfalfa and barley silage, with (1.0 mL/kg of silage DM) and without added enzyme. Three cows received a control diet (no enzyme added) and the other 3 received an enzyme-supplemented (1.0 mL/kg of diet DM) diet. Enzyme addition after the 24 h in situ incubation did not affect the disappearance of barley silage or alfalfa silage. In part 3, 60 early-lactation Holstein dairy cows were fed 1 of 3 diets for a 10-wk period: (1) control (CTL; no enzyme), (2) low enzyme (CTL treated with 0.5 mL of enzyme/kg of diet DM), and (3) high enzyme (CTL treated with 1.0 mL of enzyme/kg of diet DM). Adding enzyme to the diet had no effect on milk yield, but dry matter intake was lower for the high enzyme treatment and tended to be lower for the low enzyme treatment compared with CTL. Consequently, milk production efficiency (kg of 3.5% fat-corrected milk/kg of DM intake) linearly increased with increasing enzyme addition. Cows fed the low and high enzyme diets were 5.3 (not statistically significant) and 11.3% more efficient, respectively, compared with CTL cows. This developmental fibrolytic enzyme additive has the potential to increase fiber digestibility of forages, which could lead to greater milk production efficiency for dairy cows in early lactation.  相似文献   

9.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

10.
Forty Holstein cows were used in an 8-wk randomized block design trial to determine the effects of theoretical length of cut (TLC) and kernel processing (KP) of whole plant corn silage on nutrient intake and digestibility, milk yield, and milk composition. Corn was harvested at three-quarters milk line stage of maturity at TLC of 1.90 or 2.54 cm. At each TLC, corn was KP at either 2 or 8 mm roll clearance. The control was harvested at 1.90 cm without KP. Corn silage provided 38% of the dietary dry matter (DM) in the experimental diets. Intake of DM and nutrients was similar among treatments. Apparent digestibility of DM and acid detergent fiber (ADF) increased with increasing TLC. Fiber digestibility was improved by KP compared with unprocessed corn silage. Starch digestibility was greater for corn silage KP at 2 vs. 8 mm. Apparent digestibility of DM, crude protein, and ADF was lowest for the diet containing silage harvested at 2.54 cm TLC and KP at 8 mm, resulting in an interaction of TLC and KP. No differences were observed in DM intake (DMI) among treatments. An interaction of TLC and KP was observed, however, for yield of milk protein and energy-corrected milk (ECM) and efficiency of converting DMI to ECM because of lower yield for diets containing silage harvested at 2.54 cm TLC and KP at 8 mm. Results of this trial indicate that as TLC increases, aggressive KP is necessary to maintain nutrient digestibility and performance of lactating dairy cows.  相似文献   

11.
Two Latin square trials, using 21 or 24 multiparous lactating Holstein cows, compared the feeding value of red clover and alfalfa silages harvested over 2 yr. Red clover silages averaged 2 percentage units lower in crude protein (CP) and more than 2 percentage units lower in neutral detergent fiber and acid detergent fiber than did alfalfa silage. In trial 1, diets were formulated to 60% dry matter (DM) from alfalfa, red clover silage, or alfalfa plus red clover silage (grown together); CP was adjusted to about 16.5% by adding soybean meal, and the balance of dietary DM was from ground high moisture ear corn. Nonprotein N in red clover and alfalfa-red clover silages was 80% of that in alfalfa silage. Although DM intake was 2.5 and 1.3 kg/d lower on red clover and alfalfa plus red clover, yield of milk and milk components was not different among diets. In trial 2, four diets containing rolled high moisture shelled corn were formulated to 60% DM from alfalfa or red clover silage, or 48% DM from alfalfa or red clover silage plus 12% DM from corn silage. The first three diets contained 2.9% soybean meal, and the red clover-corn silage diet contained 5.6% soybean meal; the 60% alfalfa diet contained 18.4% CP, and the other three diets averaged 16.5% CP. Nonprotein N in red clover silage was 62% of that in alfalfa silage. Intake of DM was about 2 (no corn silage) and 1 kg/d (plus corn silage) lower on red clover. Yield of milk and milk components was not different among the first three diets; however, yields of milk, total protein, and true protein were higher on red clover-corn silage with added soybean meal. Replacing alfalfa with red clover improved feed and N efficiency and apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose in both trials. Net energy of lactation computed from animal performance data was 18% greater in red clover than alfalfa. Data on milk and blood urea and N efficiency suggested better N utilization on red clover.  相似文献   

12.
The effects of forage source, concentration of metabolizable protein (MP), type of carbohydrate, and their interactions on nutrient digestibility and production were evaluated using a central composite treatment design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Rumen-degradable protein comprised 10.7% of the dry matter (DM) in all diets, but undegradable protein ranged from 4.1 to 7.1%, resulting in dietary MP concentrations of 8.8 to 12.0% of the DM. Dietary starch ranged from 22 to 30% of the DM with a concomitant decrease in neutral detergent fiber concentrations. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block consisted of three 21-d periods, and each cow was assigned a unique sequence of 3 diets, resulting in 108 observations. Milk production and composition, feed intake, and digestibility of major nutrients (via total collection of feces and urine) were measured. Few significant interactions between main effects were observed. Starch concentration had only minor effects on digestibility and production. Replacing corn silage with alfalfa decreased digestibility of N but increased digestibility of neutral detergent fiber. Increasing the concentration of MP increased N digestibility. The concentration (Mcal/kg) of dietary digestible energy (DE) increased linearly as starch concentration increased (very small effect) and was affected by a forage by MP interaction. At low MP, high alfalfa reduced DE concentration, but at high MP, increasing alfalfa increased DE concentration. Increasing alfalfa increased DM and DE intakes, which increased yields of energy-corrected milk, protein, and fat. Increasing MP increased yields of energy-corrected milk and protein. The response in milk protein to changes in MP was much less than predicted using the National Research Council (2001) model.  相似文献   

13.
Twenty-four multiparous lactating Holstein cows were blocked by days in milk and assigned to treatment sequences in a replicated 4x4 Latin square with 21-d periods. The four diets, formulated from alfalfa silage plus a concentrate mix based on ground high moisture ear corn, contained [dry matter (DM) basis]: 1) 20% concentrate, 80% alfalfa silage (24% nonfiber carbohydrates; NFC), 2) 35% concentrate, 65% alfalfa silage (30% NFC), 3) 50% concentrate, 50% alfalfa silage (37% NFC), or 4) 65% concentrate, 35% alfalfa silage (43% NFC). Soybean meal and urea were added to make diets isonitrogenous with equal nonprotein N (43% of total N). Intake of DM and milk yield indicated that adaptation was complete within 7 d of changing the diets within the Latin square. There were linear increases in apparent digestibility of DM and organic matter, and a linear decrease in neutral detergent fiber (NDF) digestibility with increasing dietary NFC. Solutions of significant quadratic equations yielded estimated maxima for intake of DM, organic matter, digestible organic matter, and NDF at, respectively, 37, 38, 43, and 27% dietary NFC. There were linear increases in yields of milk, protein, lactose, and solids not fat with increasing dietary NFC. Feed efficiency (milk/DM intake) yielded a quadratic response with a minimum at 27% dietary NFC. Maxima for milk fat content, fat yield, and fat-corrected milk yield were estimated to occur at, respectively, 30, 34 and 38% dietary NFC. In this short-term trial, maximal DM intake and fat-corrected milk yield indicated that the optimum concentrate for cows fed high moisture ear corn plus alfalfa silage as the only forage was equivalent to 37 to 38% dietary NFC; however, yields of milk, protein and solids not fat were still increasing at 65% dietary concentrate (43% NFC).  相似文献   

14.
Three Latin square trials, with 20 (two trials) or 24 (one trial) multiparous lactating Holstein cows (four in each trial with ruminal cannulae), compared the feeding value of red clover and alfalfa silages harvested over 3 yr. Overall, the forages contained similar amounts of neutral detergent fiber and acid detergent fiber; however, red clover silage contained more hemicellulose, less ash and crude protein (CP), and only 67% as much nonprotein N, as a proportion of total N, as did alfalfa silage. Diets were formulated with equal dry matter (DM) from alfalfa or red clover silage and contained on average 65% forage, 33 or 30% ground high moisture ear corn, and 0 or 3% low soluble fishmeal (DM basis). Diets fed in the Latin squares contained (mean dietary CP): 1) alfalfa (17.8% CP); 2) red clover (15.1% CP); 3) alfalfa plus fishmeal (19.6% CP); and 4) red clover plus fishmeal (16.9% CP). Although performance varied somewhat among trials, overall statistical analysis showed that replacing alfalfa with red clover reduced yields of milk, fat-corrected milk, fat, protein, lactose, and SNF; these effects were related to the 1.2 kg/d lower DM intake for cows fed red clover. Replacing alfalfa with red clover improved body weight gain and reduced concentrations of milk and blood urea and ruminal NH3. Apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose all were greater when red clover was fed. There were no significant forage x fishmeal interactions for DM intake and yield of milk and milk components, indicating that supplementation with rumen undegradable protein gave similar increases in production on both forages. Net energy of lactation (NE(L)), estimated from maintenance, mean milk yield, and body weight change, in alfalfa and red clover silage were, respectively, 1.25 and 1.38 Mcal NE(L)/kg of DM, indicating 10% greater NE(L) in red clover.  相似文献   

15.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components.  相似文献   

16.
Feeding trials were conducted with lactating cows and growing lambs to quantify effects of replacing dietary alfalfa silage (AS) with red clover silage (RCS) on nutrient utilization. The lactation trial had a 2 × 4 arrangement of treatments: AS or RCS fed with no supplement, rumen-protected Met (RPM), rumen-protected Lys (RPL), or RPM plus RPL. Grass silage was fed at 13% of dry matter (DM) with AS to equalize dietary neutral detergent fiber (NDF) and crude protein contents. All diets contained (DM basis) 5% corn silage and 16% crude protein. Thirty-two multiparous (4 ruminally cannulated) plus 16 primiparous Holstein cows were blocked by parity and days in milk and fed diets as total mixed rations in an incomplete 8 × 8 Latin square trial with four 28-d periods. Production data (over the last 14 d of each period) and digestibility and excretion data (at the end of each period) were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Although DM intake was 1.2 kg/d greater on AS than RCS, milk yield and body weight gain were not different. However, yields of fat and energy-corrected milk as well as milk content of fat, true protein, and solids-not-fat were greater on AS. Relative to AS, feeding RCS increased milk and energy-corrected milk yield per unit of DM intake, milk lactose content, and apparent N efficiency and reduced milk urea. Relative to AS, apparent digestibility of DM, organic matter, NDF, and acid detergent fiber were greater on RCS, whereas apparent and estimated true N digestibility were lower. Urinary N excretion and ruminal concentrations of ammonia, total AA, and branched-chain volatile fatty acids were reduced on RCS, indicating reduced ruminal protein degradation. Supplementation of RPM increased intake, milk true protein, and solids-not-fat content and tended to increase milk fat content. There were no silage × RPM interactions, suggesting that RPM was equally limiting on both AS and RCS. Supplementation of RPL did not influence any production trait; however, a significant silage × RPL interaction was detected for intake: RPL reduced intake of AS diets but increased intake of RCS diets. Duplicated metabolism trials were conducted with lambs confined to metabolism crates and fed only silage. After adaptation, collections of silage refusals and excreta were made during ad libitum feeding followed by feeding DM restricted to 2% of body weight. Intake of DM was not different when silages were fed ad libitum. Apparent digestibility of DM, organic matter, NDF, and hemicellulose was greater in lambs fed RCS on both ad libitum and restricted intake; however, acid detergent fiber digestibility was only greater at restricted intake. Apparent and estimated true N digestibility was substantially lower, and N retention was reduced, on RCS. Results confirmed greater DM and fiber digestibility in ruminants and N efficiency in cows fed RCS. Specific loss of Lys bioavailability on RCS was not observed. Based on milk composition, Met was the first-limiting AA on both silages; however, Met was not limiting based on production and nutrient efficiency. Depressed true N digestibility suggested impaired intestinal digestibility of rumen-undegraded protein from RCS.  相似文献   

17.
The objective of this study was to determine whether production and nutrient utilization differed when lactating cows were fed diets based on 1 of 3 sources of alfalfa silage (AS) and whether performance was altered by feeding rumen-protected Met (RPM; fed as Mepron). Thirty-six lactating Holstein cows were blocked by parity and days in milk, then assigned to a randomized complete block design and fed a 3 × 2 arrangement of diets formulated from alfalfa ensiled in bag, bunker, or oxygen-limited silos, and supplemented with either 0 or 8 g of RPM/d. After feeding a covariate diet for 3 wk, treatment diets were fed for the remaining 12 wk of the trial. Experimental diets averaged [dry matter (DM) basis] 41% AS, 24% corn silage, 24% high-moisture corn, 3.7% soybean meal, 4% roasted soybeans, 2% ground shelled corn, 1.0% minerals and vitamins, 16.7% CP, and 31% NDF. Alfalfa from the oxygen-limited silo was lower in ash, higher in lactate, nonfiber carbohydrate, and in vitro NDF digestibility, had lower pH and ammonia content, and gave rise to greater DM intake and ADF digestibility than silage from the other 2 silos, indicating a more effective fermentation that, in turn, resulted in greater nutrient preservation. However, the more favorable composition, intake, and digestibility of alfalfa from the oxygen-limited silo were not reflected in improved milk production, which was not different among alfalfa sources. There was increased apparent N efficiency and trends for improved feed efficiency and protein yield with RPM supplementation across all 3 silages. The National Research Council (2001) model predicted that feeding RPM reduced Lys:Met ratio from 3.5 to 2.9, indicating that the diets were limiting in Met.  相似文献   

18.
Five Holstein cows with ruminal cannulas were used in a 5 x 5 Latin square design to determine the effect of replacing forage NDF with soyhull NDF and varying concentrations of nonstructural carbohydrates on nutrient digestion and milk production. Diets in which NDF percentage from forage (corn silage: alfalfa hay, 1:1) was 80 (control), 70, or 60 were formulated by substituting soyhulls for forage; total forage was 43.2, 36.7, and 31.1% of the diets, respectively, but total NDF was 31%. Nonstructural carbohydrates were formulated to be 47 (control), 35, or 25% by substituting soyhulls, roasted soybeans, and Ca soaps for concentrate. Ruminal acetate: propionate ratio decreased linearly when diets lower in forage NDF were fed, but it increased quadratically when dietary nonstructural carbohydrates were reduced. Apparent digestibility of OM increased quadratically, but NDF digestibility and lactation performance were unaffected when diets lower in forage NDF were fed. Digestibility of NDF increased linearly when nonstructural carbohydrates were reduced, perhaps because of greater digestibility of soyhull NDF and smaller negative associative effects. Fat from soybeans and Ca soaps was increased as nonstructural carbohydrates decreased. Added fat probably increased fatty acid digestibility and decreased milk protein percentage. Greater FCM production without correspondingly greater feed intake or BW loss increased feed efficiency as nonstructural carbohydrates decreased. In dairy rations containing soyhulls, 60% of dietary NDF from forage should maintain lactation performance, and decreasing nonstructural carbohydrates to 25 to 35% of feed DM, coupled with adding dietary fat, may decrease negative associative effects and improve efficiency of milk production.  相似文献   

19.
Twelve Holstein cows, averaging 34 d postpartum, were used in three replications of a 4 x 4 Latin square design to determine the effects of feeding different levels of alkaline hydrogen peroxide-treated wheat straw on digestion and production responses in lactating dairy cows. Complete mixed diets consisted of 50% concentrate (DM basis) plus varying proportions of treated wheat straw, alfalfa haylage, and corn silage as the forage source. Treatment contained 0 (control), 12.5 (low), 25.0 (medium), or 37.5% (high) treated wheat straw in the diet. Dry matter intakes were 18.5, 17.2, 17.4, and 16.7 kg/d for the four treatments, respectively. Apparent digestibilities of DM and OM were decreased (approximately 4.4 percentage units), and NDF and ADF digestibilities were increased by 9.4 and 3.0 percentage units, respectively, with the high wheat straw diet. Yields of milk and 4% FCM, and SNF percentage did not differ among the treatment groups. Milk fat percentage increased (from 3.07 to 3.32%) and milk protein percentage decreased (from 2.61 to 2.56%) as the proportion of treated wheat straw increased in the diet. Cows fed the higher proportions of treated wheat straw had increased ruminal concentrations of total VFA and molar percentage acetate but a decreased molar percentage propionate, resulting in a greater acetate to propionate ratio. Cows fed the low and medium wheat straw diets had slightly lower DM intakes but production responses were similar to cows fed the control diet containing alfalfa haylage and corn silage as fiber sources.  相似文献   

20.
Thirty-six Holsteins were allotted at parturition to six treatments to measure effects of diet nitrogen and increased insolubility of silage nitrogen on performance and ruminal, plasma, and milk constituents during the first 100 d of lactation. Diets contained 40% concentrate and 60% silage in dry matter. The six silage treatments were untreated corn silage (low nitrogen); untreated corn silage and untreated alfalfa silage (1:1); untreated corn silage and formaldehyde and formic acid-treated alfalfa silage (1:1); ammonia-treated corn silage (low nitrogen); treated corn silage and untreated alfalfa silage (1:1); or treated corn silage and treated alfalfa silage (1:1). Diets containing ammonia-treated corn silage had higher hot water-insoluble nitrogen and diets containing formaldehyde and formic acid-treated alfalfa had higher autoclaved rumen fluid-insoluble and hot water-insoluble nitrogen that their respective untreated silage diets. Dry matter intake, daily yields of milk and its constituents, ruminal NH3 nitrogen, and plasma urea nitrogen were lower for cows consuming low nitrogen diets containing only corn silage compared with cows consuming high nitrogen diets containing alfalfa. Dry matter intake and milk protein yields were greater for cows consuming treated alfalfa compared with untreated alfalfa in the diet. Daily 4% fat-corrected milk yields tended to be higher for diets containing treated alfalfa than untreated alfalfa. Cows fed diets containing NH3-treated corn silage had similar milk, fat, and protein yields compared with diets containing untreated corn silage and urea in the concentrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号