首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the growth of Si1−yCy and Si1−xyGexCy alloys on Si(001) by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy using an argon/methane gas mixture. Various Si/Si1−yCy and Si/Si1−xyGexCy multilayers have been grown and characterized principally by X-ray diffraction and Raman spectroscopy. The influence of growth parameters and electron cyclotron resonance plasma source operating conditions on the C substitutional incorporation was studied. Under optimum growth conditions the structures show good structural properties and sharp interfaces with carbon being essentially substitutionally incorporated up to concentrations of 1%. No significant carbon incorporation was measured in films grown under a high methane partial pressure without plasma excitation. Si1−xyGexCy layers grown with this technique exhibit the strain compensation and enhanced thermal stability expected for these ternary alloys. Carbon pre-deposition of Si through surface exposure to the argon/methane plasma is shown to act as an antisurfactant on the growth of Ge islands by suppressing the formation of a Ge wetting layer on the surface.  相似文献   

2.
Si1−xGex is a prospective material for electronics. This is mostly because Si1−xGex-based technology is close to silicon-based technology, which is advanced, widely applicable, and cheap. The majority of work on this material is devoted to Si1−xGex-based heteroepitaxy, and in particular to the Si1−xGex/Si system; few publications are devoted to bulk single-crystal. Here we focus on some interesting properties of bulk Si1−xGex solid solutions. First, under heat treatment and alpha- and beta-irradiation the efficiency of defect introduction decreases with the increase of Ge composition of the Si1−xGex single-crystal. This is because Ge atoms in a crystal lattice are annihilation centers for primary defects. Hence, this material is more resistant to temperature and radiation than silicon. Second, it is known that, since Z(Ge)Z(Si), the sensitivity of the material to irradiation should increase with the concentration of Ge. We show that Si1−xGex nuclear detectors have efficiency three times higher than silicon detectors. Finally, we note that one of the major problems in materials based on solid solutions is the composition uniformity. Our investigations on the influence of composition fluctuations on material properties have shown that the material has a sufficient uniformity at x<0.1. Such an alloy is a prospective material for electronics.  相似文献   

3.
We succeeded in obtaining strained Si1−yCy films at a substrate temperature of 200 °C by the hot-wire cell method. The substitutional carbon concentration in films annealed at 700 °C was 0.9%, while it was limited to 0.13% for a sample grown by gas-source molecular beam epitaxy (MBE) at a substrate temperature of 700 °C. We investigated the thermal stability of strained Si1−yCy films for device application. Annealing at over 900 °C caused the formation of 3C-SiC and relaxation of the strain occurred. From this result, we found that the process temperature should be lower than 800 °C. A low-temperature MOSFET process, in which all process temperatures after deposition of Si1−yCy were lower than 800 °C, was developed and a strained Si1−yCy MOSFET was fabricated.  相似文献   

4.
B-doped a-Si1−xCx:H films for a window layer of Si thin film solar cells have been prepared by the Cat-CVD method. It is found that C is effectively incorporated into the films by using C2H2 as a C source gas, where an only little C incorporation is observed from CH4 and C2H6 under similar deposition conditions. Using a-Si1−xCx:H films grown from C2H2, heterojunction p–i–n solar cells have been prepared by the Cat-CVD method. The cell structure is (SnO2 Asahi-U)/ZnO/a-Si1−xCx:H(p)/a-Si:H(i)/μc-Si:H(n)/Al. The obtained conversion efficiency was 5.4%.  相似文献   

5.
High quality and thin relaxed SiGe films were grown on Si (0 0 1) using ultra high vacuum chemical vapor deposition (UHV/CVD) by employing an intermediate Si1−yCy layer. The Si1−yCy/SiGe bilayer was found to change mechanism of relaxation in the SiGe overlayer. Compared with the samples with a Si layer, the equilibrium critical thickness of top SiGe films with rough surface by introducing an intermediate Si0.986C0.014 layer are drastically reduced; this result was attributed to larger tensile stress in the inserted Si0.986C0.014 layer. With a 210-nm-thick Si0.8Ge0.2 overlayer, this Si0.8Ge0.2/Si0.986C0.014/Si0.8Ge0.2 heterostructure has a threading dislocation density (TDs) less than 1 × 105 cm−2 and a residual strain of 30%. The root mean square (RMS) of surface roughness for this sample was measured to be about 1.8 nm. In this SiGe/Si1−yCy/SiGe structure, C atoms in the intermediate Si layer will improve the relaxation of thin SiGe overlayer, however, the relaxation for the 700-nm-thick SiGe overlayer is independent of the addition of C. The point defects rich Si0.986C0.014 layer plays the role to confine the misfit dislocations, which formed at the interface of the top Si0.8Ge0.2 and the Si0.986C0.014 layer, and blocked the propagation of TDs. Strained-Si n-channel metal-oxide-semiconductor transistors (n-MOSFETs) with a 210-nm-thick Si0.8Ge0.2 overlayers as buffer were fabricated and examined. Drain current and effective electron mobility for the strained-Si device with this novel substrate technology was found to be 100 and 63% higher than that of control Si device. Our results show that thin relaxed Si0.8Ge0.2 films with the intermediate Si0.986C0.014 layer serve as good candidates for high-speed strained-Si devices.  相似文献   

6.
We propose a new approach to fabrication of hydrogenated amorphous silicon carbide (a-Si1−xCx:H) thin films for solar cells by the catalytic chemical vapor deposition (Cat-CVD) method using a carbon catalyzer, which is more stable than tungsten or tantalum. It was found that by using the carbon catalyzer, undoped and boron-doped a-Si1−xCx:H films were easily obtained from a SiH4, CH4 and B2H6 mixture without any change in the catalyzer surface, even after deposition for longer than 30 h.  相似文献   

7.
A Portavoce  F Volpi  A Ronda  P Gas  I Berbezier   《Thin solid films》2000,380(1-2):164-168
The segregation and incorporation coefficients of antimony (Sb) in Si1−xGex buried doped layers were investigated simultaneously using specific temperature sequences. We first showed an exponential kinetic evolution of Sb surface segregation in Si. In contrast such an evolution could not be observed in Si1−xGex because of the Sb thermal desorption, at growth temperatures of 550°C. We also showed an increased surface segregation increasing with the partial Ge concentration in Si1−xGex alloys, which was explained by a decrease of the kinetic barrier for Sb atoms mobility. It was, therefore, possible to determine the growth conditions to obtain a Si1−xGex doped layer with a controlled incorporation level and a negligible surface segregation obtained by the thermal desorption of the Sb surface coverage. Finally, using Sb surfactant mediated growth, we found Ge dots with lateral sizes reduced by a factor of 2.8 and density multiplied by a factor of four as compared to dots directly deposited on Si(001).  相似文献   

8.
From the analysis of the variation of optical absorption coefficient with incident photon energy between 0.8 and 2.6 eV, obtained from ellipsometric data, the energy EG of the fundamental absorption edge and EG′ of the forbidden direct transition for CuInxGa1−xSe2 alloys are estimated. The change in EG and the spin-orbit splitting ΔSO=EG′−EG with the composition x can be represented by parabolic expression of the form EG(x)=EG(0)+ax+bx2 and ΔSO(x)=ΔSO(0)+ax+bx2, respectively. b and b′ are called “bowing parameters”. Theoretical fit gives a=0.875 eV, b=0.198 eV, a′=0.341 eV and b′=−0.431 eV. The positive sign of b and negative sign of b′ are in agreement with the theoretical prediction of Wei and Zunger [Phys. Rev. B 39 (1989) 6279].  相似文献   

9.
We report on epitaxial {1 0 0} K1−xRbxTiOPO4 waveguide films for the visible spectral range grown on KTiOPO4 substrates by liquid phase epitaxy. Using the m-line technique a refractive index increase of Δnx≈0.007 and Δnz≈0.004 for TM and TE polarisation has been determined for a K0.78Rb0.22TiOPO4 film. Optical transmission and nearfield distribution are comparable to conventional ion-exchanged waveguides. Typical attenuation of about 1 dB/cm for both TM and TE polarisation was obtained at λ=532 and 1064 nm. Energy-dispersive X-ray spectrometry reveals solid-solution films with graded rubidium composition profiles. X-ray rocking curve analyses confirm the epitaxial growth process and indicate perfect and relaxed K1−xRbxTiOPO4 films. Atomic force microscopy investigations reveal regular step structures with step heights Δh<1.3 nm resulting in rms-roughness values of ≈0.4 nm.  相似文献   

10.
Solid solutions of Bi3(Nb1−xTax)O7 (x = 0.0, 0.3, 0.7, 1) were synthesized using solid state reaction method and their microwave dielectric properties were first reported. Pure phase of fluorite-type could be obtained after calcined at 700 °C (2 h)−1 between 0 ≤ x ≤ 1 and Bi3(Nb1−xTax)O7 ceramics could be well densified below 990 °C. As x increased from 0.0 to 1.0, saturated density of Bi3(Nb1−xTax)O7 ceramics increased from 8.2 to 9.1 g cm−3, microwave permittivity decreased from 95 to 65 while Qf values increasing from 230 to 560 GHz. Substitution of Ta for Nb modified temperature coefficient of resonant frequency τf from −113 ppm °C−1 of Bi3NbO7 to −70 ppm °C−1 of Bi3TaO7. Microwave permittivity, Qf values and τf values were found to correlate strongly with the structure parameters of fluorite solid solutions and the correlation between them was discussed in detail. Considering the low densified temperature and good microwave dielectric proprieties, solid solutions of Bi3(Nb1−xTax)O7 ceramics could be a good candidate for low temperature co-fired ceramics application.  相似文献   

11.
Structural properties of ion-beam-induced epitaxial crystallization (IBIEC) for amorphous layers of GaAs on GaAs(100), BP on BP(100) and Si1−xGex and Si1−xyGexCy on Si(100) have been investigated. Crystallization was induced by ion bombardment with 400 keV Ne, Ar or Kr at 150 °C for GaAs and at 350 °C for BP. Epitaxial crystallization up to the surface was observed both in GaAs and BP at temperatures much below those required for the solid phase epitaxial growth (SPEG). The growth rate per nuclear energy deposition density has shown a larger dependence on ion dose rate in cases of heavier ion bombardments both for GaAs and BP. Crystallization of a-GaAs with ions whose projected ranges are within the amorphous layer thickness was also observed at 150 °C. Epitaxial crystallization of Si1−xGex and Si1−xyGexCy layers (x = 0.13 and y = 0.014 at peak concentration) on Si(100) formed by high-dose implantation of 80 keV Ge and 17 keV C ions has been observed in the IBIEC process with 400 keV Ar ion bombardments at 300–400 °C. Crystalline growth by IBIEC has shown a larger growth rate in Si1−xyGexCy/Si} than in Si1−xGex/Si} with the same Ge concentration for all bombardments under investigation. X-ray rocking-curve measurements have shown a strain-compensated growth in Si1−xyGexCy/Si}, whereas Si1−xGex/Si} samples have shown a growth with strain accommodation.  相似文献   

12.
Microcrystalline silicon carbide (μc-Si1−xCx) films were successfully deposited by the hot wire cell method using a gas mixture of SiH4, H2 and C2H2. It was confirmed by Fourier transform infrared and X-ray diffraction analyses that the films consisted of μc-Si grains embedded in a-Si1−xCx tissue. The p-type μc-Si1−xCx films were deposited using B2H6 as a doping gas. A dark conductivity of 0.2 S/cm and an activation energy of 0.067 eV were obtained. The p-type μc-Si1−xCx was used as a window layer of a-Si solar cells, in which the intrinsic layer was deposited by photo-chemical vapor deposition, and an initial conversion efficiency of 10.2% was obtained.  相似文献   

13.
High quality GaN epitaxial layers were obtained with AlxGa1−xN buffer layers on 6H–SiC substrates. The low-pressure metalorganic chemical vapor deposition (LP-MOCVD) method was used. The 500 Å thick buffer layers of AlxGa1−xN (0≤x≤1) were deposited on SiC substrates at 1025°C. The FWHM of GaN (0004) X-ray curves are 2–3 arcmin, which vary with the Al content in AlxGa1−xN buffer layers. An optimum Al content is found to be 0.18. The best GaN epitaxial film has the mobility and carrier concentration about 564 cm2 V−1 s−1 and 1.6×1017 cm−3 at 300 K. The splitting diffraction angle between GaN and AlxGa1−xN were also analyzed from X-ray diffraction curves.  相似文献   

14.
The BaxSr1−xTiO3 (BST)/Pb1−xLaxTiO3 (PLT) composite thick films (20 μm) with 12 mol% amount of xPbO–(1 − x)B2O3 glass additives (x = 0.2, 0.35, 0.5, 0.65 and 0.8) have been prepared by screen-printing the paste onto the alumina substrates with silver bottom electrode. X-ray diffraction (XRD), scanning electron microscope (SEM) and an impedance analyzer and an electrometer were used to analyze the phase structures, morphologies and dielectric and pyroelectric properties of the composite thick films, respectively. The wetting and infiltration of the liquid phase on the particles results in the densification of the composite thick films sintered at 750 °C. Nice porous structure formed in the composite thick films with xPbO–(1 − x)B2O3 glass as the PbO content (x) is 0.5 ≥ x ≥ 0.35, while dense structure formed in these thick films as the PbO content (x) is 0.8 ≥ x ≥ 0.65. The volatilization of the PbO in PLT and the interdiffusion between the PLT and the glass lead to the reduction of the c-axis of the PLT phase. The operating temperature range of our composite thick films is 0–200 °C. At room temperature (20 °C), the BST/PLT composite thick films with 0.35PbO–0.65B2O3 glass additives provided low heat capacity and good pyroelectric figure-of-merit because of their porous structure. The pyroelectric coefficient and figure-of-merit FD are 364 μC/(m2 K) and 14.3 μPa−1/2, respectively. These good pyroelectric properties as well as being able to produce low-cost devices make this kind of thick films a promising candidate for high-performance pyroelectric applications.  相似文献   

15.
On the basis of the FDUC model and the hypothesis of the constant covalent radii, the expressions of the atomic nearest-neighbor and the next-nearest-neighbor bond-lengths were derived for A1−xBxC1−yDy III–V quaternary solid solutions. This set of bond-length expressions predicts the averaged bond-lengths and bond angles at any concentration (x, y) for the III–V pseudobinary and quaternary solid solutions, which are only dependent on the lattice parameters and the concentrations of the pure end compounds. When x=0, 1 or y=0, 1, A1−xBxC1−yDy III–V quaternary solid solutions degenerate into the relative pseudobinary solid solutions, in which the nearest-neighbor and the next-nearest-neighbor bond-lengths agree well with the experimental results. Further discussion and comparison with other theoretical models are also given in this paper.  相似文献   

16.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

17.
Cat-CVD method has been applied to the growth of Si–C and Si–C–O alloy thin films. Growth mechanism has been studied with emphasis on the effects of filament materials. Growth rates and alloy compositions were measured for W, Ta, Mo and Pt filaments at the filament temperatures ranging from 1300 to 2000 °C. Si1−xCx films with x ranging from 0.38 to 0.7 could be grown by using single molecule source Si(CH3)2H2 (dimethylsilane). Si–C–O ternary alloy films was successfully prepared by using Si(OC2H5)4 (tetraethoxysilane) and Si(CH3)2(OCH3)2 (dimethyldimethoxysilane) molecules.  相似文献   

18.
We have reported on the growth and magnetotransport properties of modulation p-doped Si1−xGex quantum wells on strained multilayers of 2.5 nm Si1−xGex/10 nm Si on vicinal (113) Si surfaces. Owing to the strong step-bunching properties of the (113) Si surface, both the Si1−xGex and the Si layers exhibited a regular pattern of large steps. Low-temperature magnetotransport measurements revealed a hole density (6–9×1011 cm−2) independent of direction, whereas a pronounced mobility anisotropy was found. The mobility (1000–2000 cm2/Vs) was approximately two times higher along the [33-2] direction compared to a perpendicular [−110] direction. This is attributed to anisotropic hole scattering caused by anisotropic shear strain which is always present in strained layers on (113) Si. No influence of the large regular steps, whose direction is given by the direction of the substrate miscut, on the mobility was found.  相似文献   

19.
Thin (t−0.60 μm) films of ZnSexCdS1−x were formed by vacuum evaporation on glass substrates held at 350 and 470 K. XRD studies showed that all the films were polycrystalline in nature. Films with x0.70 were hexagonal whereas films with x0.80 were cubic in structure. The structural transition was in the range 0.70<x<0.80. The lattice parameter was higher in films formed at a higher temperature. The lattice parameter followed Vegard's law. Grain size increased with substrate temperature. From the optical transmission spectra recorded in the wavelength range 300–2500 nm, the extinction coefficient, refractive index and band gaps were obtained. Band gap values showed a downward bowing with ‘x' with a bowing parameter of 0.40 eV.  相似文献   

20.
In this study, we report a systematic investigation of the metastable morphologies of Si1−xGex layers obtained by the interplay of kinetics and thermodynamics during growth on Si(001). We show that three main growth regimes can be distinguished as a function of the misfit and of the deposited thickness. They correspond to three equilibrium steady state morphologies that consist of (105)-facetted hut islands, huts and domes in co-existence, and a bimodal size distribution of domes, respectively. The shape transitions between these states are attributed to different levels of relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号