首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Surface characterization of laser-ablated polymers used for microfluidics   总被引:5,自引:0,他引:5  
Fabrication of microfluidic devices by excimer laser ablation under different atmospheres may provide variations in polymer microchannel surface characteristics. The surface chemistry and electroosmotic (EO) mobility of polymer microchannels laser ablated under different atmospheres were studied by X-ray photoelectron spectroscopy and current monitoring mobility measurements, respectively. The ablated surfaces of PMMA were very similar to the native material, regardless of ablation atmospheres due to the negligible absorption of 248-nm light by that polymer. The substrates studied that exhibit nonnegligible absorption at this energy, namely, poly(ethylene terephthalate glycol), poly(vinyl chloride), and poly(carbonate), showed significant changes in surface chemistry and EO mobility when the ablation atmospheres were varied. Ablation of these three polymer substrates under nitrogen or argon resulted in low EO mobilities with a loss of the well-defined chemical structures of the native surfaces, while ablation under oxygen yielded surfaces that retained native chemical structures and supported higher EO mobilities.  相似文献   

3.
An electrospray ionization source for integration with microfluidics   总被引:3,自引:0,他引:3  
We have demonstrated a new electrospray ionization (ESI) device incorporating a tip made from a shaped thin film, bonded to a microfluidic channel, and interfaced to a time-of-flight mass spectrometer (TOFMS). A triangular-shaped thin polymer tip was formed by lithography and etching. A microfluidic channel, 20 microm wide and 10 microm deep, was embossed in a cyclo olefin substrate using a silicon master. The triangular tip was aligned with the channel and bonded between the channel plate and a flat plate to create a microfluidic channel with a wicking tip protruding from the end. This structure aided the formation of a stable Taylor cone at the apex of the tip, forming an electrospray ionization source. This source was tested by spraying several solutions for mass spectrometric analysis. Because the components are all made by lithographic approaches with high geometrical fidelity, an integrated array system with multiple channels can be formed with the same method and ease as a single channel. We tested a multichannel system in a multiplexed manner and showed reliable operation with no significant cross contamination between closely spaced channels.  相似文献   

4.
A wide variety of elastomers are used as hydraulic seal materials to suit specific application requirements. Choosing the correct material for an application can be a challenging task, especially when the demands are at the extreme end of the spectrum.  相似文献   

5.
Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (>80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (≈10 μm), bacteria (≈1 μm), and viral-sized particles (≈40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.  相似文献   

6.
The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates. The DNA templates were anchored to magnetic beads which enabled them to be thoroughly washed between nucleotide additions. Reagents and protocols were optimized to maximize signal over background, linearity of response, cycle efficiency, and wash efficiency. As an initial demonstration of feasibility, a portion of a 229 bp Candida parapsilosis template was sequenced using both a de novo protocol and a resequencing protocol. The resequencing protocol generated over 60 bp of sequence with 100% sequence accuracy based on raw pyrogram levels. Excellent linearity was observed for all of the homopolymers (two, three, or four nucleotides) contained in the C. parapsilosis sequence. With improvements in microfluidic design it is expected that longer reads, higher throughput, and improved process integration (i.e., "sample-to-sequence" capability) could eventually be achieved using this low-cost platform.  相似文献   

7.
Introduction: mixing in microfluidics   总被引:1,自引:0,他引:1  
In this paper we briefly review the main issues associated with mixing at the microscale and introduce the papers comprising the Theme Issue.  相似文献   

8.
9.
We show the possibility to fabricate highly controlled metal micropatterns on a variety of substrates, such as semiconducting or metallic materials, exploiting a combination of spontaneous galvanic displacement reactions with microfluidics. The process is reliable and quite versatile and allows the fabrication of complex patterns of different metals on a number of substrates in few minutes on a conventional laboratory bench.  相似文献   

10.
Despite multiple orbiter and landed missions to extraterrestrial bodies in the solar system, including Mars and Titan, we still know relatively little about the detailed chemical composition and quantity of organics and biomolecules in those bodies. For chemical analysis on astrobiologically relevant targets such as Mars, Europa, Titan, and Enceladus, instrumentation should be extremely sensitive and capable of analyzing a broad range of organic molecules. Microchip capillary electrophoresis (μCE) with laser-induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant markers but, to date, has lacked the necessary degree of automation for spaceflight applications. Here we describe a fully integrated microfluidic device capable of performing automated end-to-end analyses of amino acids by μCE with LIF detection. The device integrates an array of pneumatically actuated valves and pumps for autonomous fluidic routing with an electrophoretic channel. Operation of the device, including manipulation of liquids for sample pretreatment and electrophoretic analysis, was performed exclusively via computer control. The device was validated by mixing of laboratory standards and labeling of amino acids with Pacific Blue succinimidyl ester followed by electrophoretic analysis. To our knowledge, this is the first demonstration of completely automated end-to-end μCE analyses on a single, fully integrated microfluidic device.  相似文献   

11.
Sun X  Kelly RT  Tang K  Smith RD 《Analytical chemistry》2011,83(14):5797-5803
An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high-performance nanoelectrospray ionization mass spectrometry has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter enables highly stable electrosprays at flow rates as low as 10 nL/min and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction and provides excellent stability, reproducibility, and sensitivity as well as compatibility with multilayer soft lithography.  相似文献   

12.
An array of four sensing microdome optodes (potassium, sodium, calcium, and chloride) was incorporated into a centrifugal microfluidics platform to obtain a multiion analysis system. The behavior of each sensing microdome was in good agreement with a theoretical model describing the response. The selectivity of each optode over common interfering ions was established and was used to identify calibrant solutions that can be employed for the simultaneous calibration of all four optodes without significant cross-interference. The microfluidic platform was designed to facilitate both three-point calibration of the optodes and triplicate analysis of a sample within a single run, which increases the accuracy of the determination. The optimized microfluidic system was used to determine simultaneously the concentration of potassium, sodium, calcium, and chloride in aquarium water (with the composition of Lake Tanganyika water) with less than 6% error. The simple process of fabrication of these microdomes and their incorporation into a centrifugal microfluidic platform should facilitate the development of portable ion-sensing analysis systems.  相似文献   

13.
Kim DR  Zheng X 《Nano letters》2008,8(10):3233-3237
The present study aims to enhance the analyte transport to the surface of nanowires (NWs) through optimizing the sensing configuration and the flow patterns inside the microfluidic channel, and hence to reduce the response time of NW biosensors. Specifically, numerical simulations were carried out to quantitatively investigate the effects of the fundamental surface reaction, convection, and diffusion processes on the sensing performance. Although speeding up all these processes will reduce the sensing response time, enhancing the diffusional transport was found to be most effective. Moreover, the response time of NW biosensors is inversely proportional to the local concentration of the analyte in the vicinity of the NWs, which suggests that the sensing response time can be significantly reduced by replenishing the local analyte rapidly. Therefore, the following three optimization strategies were proposed and their effects on the time response of NWs were characterized systematically: device substrate passivation, microfluidic channel modification, and suspending NWs. The combination of these three optimization methods was demonstrated to be able to reduce the response time of NW biosensors by more than 1 order of magnitude.  相似文献   

14.
In most used rotary valves in GM-type pulse-tube refrigerators the rotor makes heavy mechanical contact with the stator, so the valve is liable to wear, and large torques are needed. In this paper we will describe two types of valves, which have balanced forces on the rotor. In the first valve the rotor and the stator make no mechanical contact. The second type is a contact valve, like the classical valves, but the forces on the rotor are balanced in a different way. Therefore, these valves are less liable to wear, and the torques needed to rotate the valves are small.  相似文献   

15.
16.
The development of microfluidic tools for high-throughput nucleic acid analysis has become a burgeoning area of research in the post-genome era. Here, we have developed a microfluidic chip to perform 72 parallel 450-pL RT-PCRs. We took advantage of Taqman hydrolysis probe chemistry to detect RNA templates as low as 34 copies. The device and method presented here may enable highly parallel single cell gene expression analysis.  相似文献   

17.
Gate valves     
《Materials Today》2002,5(12):65
  相似文献   

18.
19.
Noninvasive analysis of metabolism at the single cell level will have many applications in evaluating cellular physiology. One clinically relevant application would be to determine the metabolic activities of embryos produced through assisted reproduction. There is increasing evidence that embryos with greater developmental capacity have distinct metabolic profiles. One of the standard techniques for evaluating embryonic metabolism has been to evaluate consumption and production of several key energetic substrates (glucose, pyruvate, and lactate) using microfluorometric enzymatic assays. These assays are performed manually using constriction pipets, which greatly limits the utility of this system. Through multilayer soft-lithography, we have designed a microfluidic device that can perform these assays in an automated fashion. Following manual loading of samples and enzyme cocktail reagents, this system performs sample and enzyme cocktail aliquotting, mixing of reagents, data acquisition, and data analysis without operator intervention. Optimization of design and operating regimens has resulted in the ability to perform serial measurements of glucose, pyruvate, and lactate in triplicate with submicroliter sample volumes within 5 min. The current architecture allows for automated analysis of 10 samples and intermittent calibration over a 3 h period. Standard curves generated for each metabolite have correlation coefficients that routinely exceed 0.99. With the use of a standard epifluorescent microscope and CCD camera, linearity is obtained with metabolite concentrations in the low micromolar range (low femtomoles of total analyte). This system is inherently flexible, being easily adapted for any NAD(P)H-based assay and scaled up in terms of sample ports. Open source JAVA-based software allows for simple alterations in routine algorithms. Furthermore, this device can be used as a standalone device in which media samples are loaded or be integrated into microfluidic culture systems for in line, real time metabolic evaluation. With the improved throughput and flexibility of this system, many barriers to evaluating metabolism of embryos and single cells are eliminated. As a proof of principle, metabolic activities of single murine embryos were evaluated using this device.  相似文献   

20.
An in-line sample purification method for MALDI-MS, which relies on the electrowetting-on-dielectric (EWOD)-based technique for digital microfluidics, is reported. In this method, a droplet containing peptides and impurities is moved by EWOD and deposited onto a Teflon-AF surface. A droplet of water is subsequently moved over the spot, where it dissolves and removes the impurities. A droplet containing MALDI matrix is then moved to the spot, which is analyzed by MALDI-MS. This purification method reduces the number of salt adduct peaks caused by low concentrations of impurities (e.g., 20 mM sodium phosphate), and reduces or eliminates the catastrophic effects of high concentrations of impurities (e.g., 8 M urea). The method was used to purify spots made by depositing multiple droplets of contaminated peptides. Spectra from the purified spots showed an increase in the S/N ratio as a function of the number of droplets deposited; when not purified, the S/N ratio remained constant regardless of the number of droplets. Finally, the method was used to purify protein digests for peptide mass fragment (PMF) searches, and was shown to be more efficient than the conventional method of purification with reversed-phase-packed pipet tips. We anticipate this new, in-line sample purification technique for EWOD-MALDI-MS will enable development of integrated high-throughput proteomics analysis methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号