首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
一类关联时滞系统的分散稳定化控制器设计   总被引:10,自引:1,他引:9  
俞立  陈国定 《控制与决策》1997,12(5):559-564
应用Lyapunov稳定性理论,提出一类关联时滞系统能用分散线性状态反馈镇定的充分条件,进而证明了该条件等价于子系统级上N个带参数的代数Riccati矩阵方程的正定解的存在性,并利用这些正定解矩阵给出了相应的稳定化分散控制器。应用所提出的方法,可望得到具有更小反馈增益参数的分散稳定化控制律。  相似文献   

2.
针对控制器存在短暂失效的情形,研究一类时变时滞离散系统在时滞状态反馈控制下的H_∞控制器失效时间分析问题.本文的目标是寻求控制器正常工作时间与失效时间的比率应满足的条件以确保系统指数镇定且具有加权l_2增益.为此,基于切换的思想,所考虑的系统被转化为一个仅含有两个子系统的切换系统,其中一个子系统是控制器失效时的不稳定子系统,另一个是控制器未失效时的稳定子系统.通过使用多Lyapunov函数及平均驻留时间方法,给出问题可解的充分条件及时滞状态反馈H_∞切换控制器的设计方案.仿真算例表明了所得结果的有效性.  相似文献   

3.
研究一类具有状态时滞的内联不确定性动态大系统的分散鲁棒 H∞ 控制问题 .系统的不确定性参数满足范数有界条件 .得到了由无记忆状态反馈分散控制器使每一个子系统和整个大系统都可镇定且满足给定 H∞ 性能的充分条件 .所得结果与系统时滞的大小有关 ,并以线性矩阵不等式的形式给出  相似文献   

4.
研究一类广义时滞系统的输出反馈无源控制问题。利用线性矩阵不等式,给出广义时滞系统容许(即正则、稳定、无脉冲)且严格无源的充分条件,在此基础上给出静态输出反馈控制器,保证闭环系统容许且严格无源的充分条件,并且利用矩阵不等式的解设计相应的输出反馈控制器,提供一个算例说明结论的有效性。  相似文献   

5.
时滞相关型离散时变时滞奇异系统的鲁棒镇定   总被引:1,自引:0,他引:1  
讨论含参数不确定的离散时变时滞奇异系统的时滞相关的鲁棒状态反馈稳定化问题. 在一系列等价变换下, 阐述了其和一个不确定正常线性离散时变时滞系统的鲁棒状态反馈稳定化问题的等价关系;利用矩阵不等式方法, 给出一个对所有容许的不确定, 使得闭环系统正则、因果且稳定的时滞相关鲁棒状态反馈稳定化控制器存在的充分条件以及无记忆状态反馈控制器的一个解.  相似文献   

6.
不确定性时滞大系统的分散鲁棒H∞控制   总被引:18,自引:0,他引:18  
程储旺 《自动化学报》2001,27(3):361-366
研究一类具有状态时滞的内联不确定性动态大系统的分散鲁棒H∞控制问题.系统 的不确定性参数满足范数有界条件.得到了由无记忆状态反馈分散控制器使每一个子系统和 整个大系统都可镇定且满足给定H∞性能的充分条件.所得结果与系统时滞的大小有关,并 以线性矩阵不等式的形式给出.  相似文献   

7.
线性时滞广义系统的时滞相关H控制   总被引:1,自引:0,他引:1  
讨论线性时滞广义系统的时滞相关H∞控制.首先利用Park不等式建立了一个基于二次型项的积分不等式,然后利用Lyapunov_Krasovskii泛函方法,获得了系统经慢子系统的无记忆状态反馈后不仅内部稳定,而且具有给定的H∞性能的,基于LMI的时滞相关充分条件.数值例子表明本文方法所得结论较已有文献具有较小的保守性.  相似文献   

8.
刘月  马树萍 《自动化学报》2013,39(5):594-601
利用一种奇异系统方法讨论了时滞系统的输出反馈滑模控制问题. 时滞系统的非线性项满足范数有界约束.首先,将滑动模态与线性切换面作为一个奇异时滞系统,基于奇异时滞系统的稳定性理论, 给出滑动模态稳定及切换面存在的线性矩阵不等式(Linear matrix inequality, LMI)充分条件.然后,给出使得系统闭环渐近稳定的静态输出反馈滑模控制器的设计方法,此控制器保证闭环 系统有限时间到达切换面.最后,用数值算例验证本文方法的有效性和正确性.  相似文献   

9.
本文利用输入–输出方法,研究了带有时变时滞和执行器故障的离散T–S模糊系统可靠H∞控制问题,并使用一种更切合实际的离散齐次马尔可夫链来表示执行器故障的随机行为.首先,利用一类新的模型变换方法,将离散时滞T–S模糊系统转换为互联的两个子系统.然后,利用标度小增益定理分析互联子系统的随机稳定性.通过构造参数依赖的Lyapunov函数,给出闭环系统输入–输出均方稳定且满足H∞性能的充分条件及可靠H∞控制器的设计方法.最后,给出两个数值例子验证所提方法的有效性.  相似文献   

10.
针对具有脉冲扰动和变时滞的顾前车辆纵向跟随系统,在假设各孤立子系统指数稳定的前提下,分析了该系统的群指数稳定性与控制.首先利用向量Lyapunov函数法和数学归纳法给出确保该系统群指数稳定的充分条件;然后基于得到的稳定性条件,采用滑模变结构控制策略对脉冲变时滞车辆纵向跟随系统进行控制器设计;最后通过一个数值仿真算例验证了所得结论的正确性以及在实际中如何应用.  相似文献   

11.
Output feedback control of linear two-time-scale systems   总被引:1,自引:0,他引:1  
Output feedback control of linear time-invariant singularly perturbed systems is studied. The set of all compensators that stabilize a singularly perturbed system while preserving its two-time-scale structure is parameterized. The parameterization is used to show that any two-frequency-scale stabilizing compensator can be asymptotically approximated by a compensator designed via a sequential procedure. In this procedure, a fast (high-frequency) compensator is designed first to stabilize the fast model of the system. Then, a strictly proper slow (low-frequency) compensator is designed to stabilize a modified slow model. The parallel connection of the two compensators forms a two-frequency-scale stabilizing compensator for the singularly perturbed system.  相似文献   

12.
奇异摄动系统的鲁棒控制与仿真研究   总被引:3,自引:0,他引:3  
研究参数不确定奇异摄动系统的状态反馈镇定问题,得到基于线性矩阵不等式(LMI)的系统状态反馈可镇定的充分条件,给出状态反馈控制器的设计算法。算例验证了该方法的可行性与有效性。而且,这种方法同时适用于标准奇异摄动系统和非标准奇异摄动系统的控制。最后通过例子进行了详细的仿真研究。  相似文献   

13.
In this paper, strictly positive real control for singularly perturbed systems in (semi)finite frequency ranges is studied. For the general linear systems, necessary and sufficient conditions for the existence of a stabilizing state feedback controller are given based on the generalized KYP lemma, and use the results to study singularly perturbed systems, a composite state feedback controller is constructed, which preserves the stability and positive real property.  相似文献   

14.
Asamoah and Jamshidi (1987) investigated a stabilizing controller for singularly perturbed bilinear systems. We point out that their result is incorrect unless another assumption is employed.  相似文献   

15.
We discuss the problem of designing stabilizing controllers for singularly perturbed systems on the basis of simplified models. In [1], it was shown that a constant gain output feedback controller designed on the basis of the simplified model need not stabilize the ‘true’ system containing both fast and slow modes. This phenomenon was then expanded to include the case where the simplified system is strictly proper in [2]. The objectives of this note are threefold: (i) to show that, given any proper system and any stabilizing controller for it that is proper but not strictly proper, there exists a singular perturbation of the system that is destabilized by that controller, (ii) to show that any strictly proper controller for a singularly perturbed system designed on the basis of a reduced order model will stabilize the true system for sufficiently small values of the fast dynamics parameter, and (iii) to provide a characterization, in the same spirit as [3,4], of the set of all strictly proper controllers that stabilize a given proper plant. By combining these results, it is possible to generate the class of all robustly stabilizing controllers for a given singularly perturbed system.  相似文献   

16.
The stabilization problem via state feedback, for the class of strictly bilinear singularly perturbed systems, is considered. It is shown that the stabilizing controller of the overall system can be determined by simply. using the quadratic stabilizing controllers of the fast and slow subsystems. The procedure for computing the two matrix-gains of the controller is given and some illustrative examples are worked out.  相似文献   

17.
This paper proposes a control scheme for the problem of stabilizing partly unknown multiple‐input multiple‐output linear time‐varying retarded systems. The control scheme is composed by a singularly perturbed controller and a reference model. We assume the knowledge of a number of structural characteristics of the system as the boundedness and the knowledge of the bounds for the unknown parameters (and their derivatives) that define the system matrices, as well as the structure of these matrices. The results presented here are a generalization of previous results on linear time‐varying Single‐Input Single‐Output (SISO) and multiple‐input multiple‐output systems without delays and linear time‐varying retarded SISO systems. The closed‐loop system is a linear singularly perturbed retarded system with uniform asymptotic stability behavior. The uniform asymptotic stability of the singularly perturbed retarded system is guaranteed. We show how to design a control law such that the system dynamics for each output is given by a Hurwitz polynomial with constant coefficients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In the past several decades, the singularly perturbed discrete systems have received much attention for the stability analysis and controller design. Recently, there are some results about the nonlinear singularly perturbed discrete systems. Compared with the existing result, we consider the robust stability of the uncertain nonlinear singularly perturbed discrete systems with the less conservative assumption via the Lyapunov function method. Moreover, the previous results of the singularly perturbed discrete system are only applied to the system, which is composed of the slow part and the fast part, separately. However, we consider the non-standard nonlinear singularly perturbed discrete system in which the slow part and the fast part coexist, that is, a general case of the nonlinear singularly perturbed discrete systems. Then, by using the lower-order subsystems from two standard systems, we present the robust stability of the non-standard nonlinear singularly perturbed discrete system with uncertainties.  相似文献   

19.
A class of linear shift-invariant discrete-time singularly perturbed systems with inaccessible states is considered. A design technique is formulated by which the stabilizing controller can be formed through the controllers of the slow and fast subsystems. Sufficient conditions for stability of the closed-loop system under this composite controller are given.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号