共查询到18条相似文献,搜索用时 62 毫秒
1.
基于自适应粒子滤波的跳水运动视频跟踪算法 总被引:1,自引:0,他引:1
用传统粒子滤波算法对跳水运动视频跟踪存在两个突出问题:观测模型不能适应运动员身体的表观变化;运动模型不能准确预测运动员位置的快速改变。针对这两个问题,本文提出一种自适应粒子滤波算法。该算法在粒子滤波框架下引入一种自适应观测模型,并且根据跟踪误差与运动员动作改变幅度的大小,自适应选择噪声方差和粒子数量。实验结果表明,本文算法比传统粒子滤波算法具有更低的跟踪误差率,而且在运动员动作改变幅度变大时有更好的鲁棒性。 相似文献
2.
针对目标在运动过程中存在遮挡、光照变化、背景因素等复杂情况下的跟踪问题,提出了一种多特征融合的跟踪算法;利用背景加权后的联合直方图来描述目标的灰度和纹理特征信息,提出一种多帧加权组合的模板更新策略,对模板特征分布进行自适应更新,基于当前粒子特征信息可信度加权设计了一种自适应特征融合观测模型,并结合到粒子滤波算法中,从而提高了跟踪算法的场景适应能力;实验结果表明;与基于单一特征的算法相比,该算法的适应性更强,能有效跟踪复杂场景下的运动目标. 相似文献
3.
自适应尺度目标跟踪算法 总被引:1,自引:0,他引:1
针对复杂情况下变尺度目标跟踪问题,提出一种基于粒子滤波的自适应尺度目标跟踪算法.根据参考目标的颜色分布,将参考目标分为多个区域,每个区域的颜色分布用高斯模型表示,区域的位置关系构成了对参考目标的空间约束;根据目标分割区域的颜色分布和空间约束关系构造目标外观模型,结合粒子滤波搜索目标位置并检测目标的尺度变化.目标外观模型同时包含了空间及颜色信息,提高了跟踪算法在复杂情况下检测目标尺度变化的可靠性和准确性.实验结果表明,该算法在目标具有明显尺度变化、姿态改变和部分遮挡的情况下,可以获得准确和鲁棒的跟踪结果. 相似文献
4.
Staple算法采用固定权重与学习率的方式,导致其在物体模糊等场景下跟踪精度低.为此,提出一种自适应跟踪与多特征融合的目标跟踪算法(adp-Staple).特征融合与跟踪过程中引入两种不同置信因子提升跟踪精度,特征提取过程引入主成分分析降维技术提升跟踪速度.在OTB-50与OTB-100数据集上进行对比实验,其结果表明,adp-Staple算法较传统Staple算法有更好的跟踪效果,在运动模糊等场景中有更强的鲁棒性. 相似文献
5.
为提高复杂背景下目标跟踪的鲁棒性,提出一种基于相关滤波的自适应特征融合目标跟踪算法.在HOG特征基础上,增加HSV颜色概率直方图,以此获得准确的位置预测.然后分别训练颜色名和HOG特征,并根据两个响应图的峰值自适应地分配融合系数,进而基于尺度池方法,采用多通道特征实现目标的尺度估计.模型的高置信度更新由两个响应图的平均... 相似文献
6.
7.
利用分类概念及粒子滤波理论,提出了一种基于自适应粒子滤波器的物体跟踪算法。将Boosting算法引入粒子滤波器,构建了自适应粒子滤波器,该方法首先利用背景信息和目标信息建立特征分类器,将分类器的输出结果作为粒子滤波系统观测的重要信息,进行粒子权值的计算,并在跟踪过程中不断更新特征分类器,从而自适应地更新粒子的权值。实验结果表明,该算法可以根据背景信息的不同自适应地选择特征,对于存在遮挡、形变及背景干扰等情况,依然可以很好地对目标进行稳定跟踪。 相似文献
8.
针对原始压缩跟踪使用固定大小的跟踪框来跟踪目标,提出一种尺度自适应的压缩跟踪算法,在原始的压缩跟踪算法的基础上加入粒子滤波方法,利用分类器的响应产生粒子权重,根据粒子权重大小重新采样,从而避免了粒子退化,利用一个2阶的状态转换模型去估计目标的当前位置和尺度大小,使得跟踪算法能适应运动目标的尺度变化。实验结果表明,与原始的压缩跟踪算法相比,该算法在视频流中的跟踪性能得到提升。 相似文献
9.
基于颜色特征与SIFT特征自适应融合的粒子滤波跟踪算法 总被引:1,自引:0,他引:1
针对序列图像中的运动目标在跟踪过程中发生运动模糊以及部分遮挡的问题进行了研究, 提出一种将改进的颜色直方图特征模型与尺度不变特征(SIFT)模型相融合的粒子滤波跟踪算法。采用基于模糊逻辑的方法, 根据当前跟踪环境自适应调节两种特征信息的权重, 从而实现特征信息间的融合, 提高描述目标观测的可靠性。实验结果证明, 该算法优于传统的单特征或采用固定权值的多特征目标跟踪算法。 相似文献
10.
针对实际环境中运动目标的状态转移模型以及随机噪声分布存在的不确定性,提出了一种适用于复杂运动状态的视频目标跟踪算法。该算法同时结合了Kalman滤波(KF)实时性好的优点,以及粒子滤波(PF)能同时处理非线性、非高斯滤波问题的优点,通过对Kalman滤波性能进行分析,定义了评价滤波性能优劣的参数并作为判断条件,实现了不同运动状态下Kalman滤波和粒子滤波自适应切换。通过实验表明该方法在目标运动状态发生显著变化时仍能够实现稳定跟踪,同时具有较高的跟踪精度。 相似文献
11.
12.
13.
14.
研究了运动目标检测与跟踪的DSP(DigitalSignalProcessor)实现算法,以形心跟踪算法为整个处理系统的核心。采用目标形心跟踪算法,通过目标分割阶段的目标标记,如目标面积、周长、形心位置等信息的提取建立目标跟踪波门,实现目标的连续跟踪,并将此算法移植到sEED—VPM642硬件平台,实验结果表明能够达到预定目标。此外,为了克服形心算法的准确性和实时性缺陷,采用粒子滤波对算法进行必要的扩展,从MATLAB的仿真结果看,除个别采样点存在误差较大的情况,真实值曲线与粒子滤波跟踪曲线拟合较好。 相似文献
15.
粒子滤波在非线性和非高斯问题上具有独特的优越性,但在视频跟踪过程中,其跟踪性能却在很大程度上依赖于观测模型的选择。为了解决被跟踪目标特征状态随时间变化而与粒子观测模型不匹配的问题,提出了一种新的粒子滤波算法,即将被跟踪目标的不同特征状态与粒子观测模型相结合,形成一组具有不同观测模型的粒子,并且在跟踪过程中,对应不同观测模型的粒子根据被跟踪目标所表现的特征线索的变化而相互转换,从而动态刻画了被跟踪目标特征变化的过程。实验结果表明,本算法能够有效处理由于头部旋转而导致跟踪性能下降甚至丢失跟踪目标的问题,提高了跟踪的准确性,并且具有较好的鲁棒性。 相似文献
16.
17.
为了减小载波频率偏差对OFDM系统的影响,提出了一种改进的最小均方自适应算法来进行频偏跟踪,并对多种时变频偏的情况进行了计算机仿真,得到了跟踪曲线和频偏补偿前后的BPSK星座图。理论分析和仿真结果表明,由于本文的算法收敛速度快,对时变频偏的跟踪达到了较好的效果,提高了OFDM系统解调性能,克服了非自适应方法和跟踪缓慢的自适应算法难以适应时变频偏的缺点。 相似文献