共查询到20条相似文献,搜索用时 9 毫秒
1.
量子点敏化电池具有很多染料敏化电池无法比拟的优势,因此量子点敏化太阳能电池被视为具有高潜力的未来电池。文章对量子点敏化电池的发展历程、结构、工作原理、光阳极的制备、敏化剂的改性等作了简单介绍。 相似文献
2.
量子点敏化太阳能电池研究进展 总被引:1,自引:0,他引:1
综述了量子点敏化太阳能电池的结构、工作原理和量子点敏化剂的沉积方式、对电极的制备及性能、量子点敏化剂的改性以及半导体薄膜的制备方法,最后结合现存问题提出了今后的研究方向。 相似文献
3.
基于热载流子和多激子效应的新型低成本量子点敏化太阳电池(QDSSCs)的理论,光电转换效率高达66%。然而,目前QDSSCs的效率普遍维持在5%,远低于理论值。因此,对电极较低的催化活性和导电性是限制QDSSCs性能提升的主要原因。设计构筑具有高催化活性和导电性的新型对电极成为提高QDSSCs效率的关键。从增强对电极的催化活性和导电性的角度出发,分别阐述了5类硫化铜复合对电极与QDSSCs效率之间的影响关系,明确了复合对电极的构筑及性能优化是今后提升QDSSCs效率的一个关键研究方向。 相似文献
4.
通过静电纺丝技术,制备TiO2光阳极,在该光阳极上用连续离子吸附与反应法制备CdS/ZnS量子点,并与Pt对电极、多硫化合物电解液组装成量子点敏化太阳能电池(QDSCs)。利用ZnS比CdS导带高的特点,制备CdS/ZnS共敏化量子点。利用X射线衍射对光阳极进行物相分析,扫描电子显微镜和能谱仪进行形貌和元素成分表征,并将组装后的电池通过伏安特性曲线(J-V)进行光电性能分析。结果表明:量子点的引入对TiO2的晶型影响不大;CdS/ZnS量子点成功的附着在TiO2光阳极表面,通过比较不同循玎沉积次数的CdS与Zn2量子点光阳极的光电性能。先对CdS循环浸泡7次、后对ZnS循环浔泡5次数的量子点,光电性能最优,拥有最高的开路电压(0.87V)和光电转换效率(1.09%),与单独的CdS量子点敏化太阳能电池相比较,光电转换效率提高了71.56%。 相似文献
5.
6.
7.
对电极是量子点敏化太阳能电池(QDSCs)的重要组成部分,改进对电极是提高QDSCs稳定性,光电转换效率的有效手段之一。本文主要介绍了Cu2S对电极的制备工艺及其存在的优缺点,讨论了Cu2S对电极的在QDSCs应用中的优越性和存在的问题,指出了以Cu2S为对电极是提高QDSCs稳定性和光电转换效率的重要途径。 相似文献
8.
9.
10.
量子点(QDs)的结构和组成决定了量子点敏化太阳电池(QDSSCs)光生电荷的产生、分离、传输及其光电转换效率。本文综述了近年来不同结构和组成的QDs作为敏化剂对QDSSCs效率的影响。 相似文献
11.
12.
量子点敏化太阳能电池(quantum dot-sensitized solar cells,QDSSCs)由于其理论转化效率高(44%)、带隙可调、价格低廉和稳定性好等优点引起了广泛关注。本文就QDSSCs的结构组成、工作原理、量子点(quantum dots,QDs)的合成方法、限制效率的因素以及优化方法等进行了综述,总结了量子点的两种合成方法即原位沉淀法和非原位沉淀法。与此同时,分析了目前影响QDSSCs效率的主要因素,如电子-空穴对的复合、光阳极结构不完善、电解质性能不佳等,最后对如何提高QDSSCs光电转化效率的研究重点和方向进行了展望,指出可通过改性量子点敏化剂、优化光阳极半导体及改善量子点与半导体间的界面特性等方法提高转换效率。 相似文献
13.
14.
15.
17.
CdS量子点作为一种典型的半导体材料,在光催化中表现出高效率的催化活性,并且可以通过改变颗粒大小及表面性质从而对能带结构进行调控,因此在光催化产氧中有十分广阔的应用前景。本论文通过热注射法合成了CdS量了点,并采用不同浓度的二氯硫辛酸(DHLA)对量子点进行表面保护,再进一步探讨Ni2+对光催化反心的作用。所得产物利用UV-Vis光谱进行表征,并通过气相色谱进行产氧测试。结果表明在实验采用的浓度范围内,表面基团的量对CdS的光催化产氯几乎不产生影响,而N2+的存在可以提高产氧效率。 相似文献
18.
分别以不同质量的生物分子牛血清蛋白为模板剂,制备了不同大小粒径的ZnO半导体材料,并将其用作染料敏化太阳能电池的光阳极材料。结果发现,大颗粒(粒径为600 nm)的光电效率为0.473%,低于小颗粒(粒径为100 nm)的0.645%的光电效率。研究发现,粒径大小对ZnO染料敏化电池的短路电流密度有较大的影响,粒径越大,短路电流密度越小。随着牛血清蛋白量的增加,ZnO纳米粒子的粒径逐渐增大,短路电流密度依次减小。当牛血清蛋白加入量为0.05 g时,ZnO基DSSC的光电转换效率最高。 相似文献
19.
量子点敏化太阳能电池是兼具低成本和高理论转化效率的第三代太阳能电池。电解质是量子点敏化太阳能电池的重要组成部分,是影响电池的光电转换性能及稳定性的重要因素之一。本文评述了量子点敏化太阳能电池中液态、准固态和固态电解质体系的研究进展,并对电解质的发展前景进行了展望。 相似文献
20.
采用溶剂热法和原位法制备了两种具有不同形貌CuS对电极,并应用于量子点敏化太阳能电池(QDSC)中。结果表明:在原位法制备的CuS对电极中,由尺寸在20 nm左右的CuS纳米颗粒团聚成较大的不规则颗粒;在水热法制备的CuS对电极中,其微观结构为纳米棒和纳米片组成的复合结构。与Pt对电极相比,两种CuS对电极的电学性能均优于Pt对电极:原位法制备的CuS对电极的光电转换效率最大,为1.840%,界面传荷电阻Rct为3.346Ω;溶剂热法制备的CuS对电极的光电转换效率为1.450%,界面传荷电阻Rct为2.609Ω,Pt对电极的光电转换效率为0.940%,传荷电阻Rct为11.680Ω。 相似文献