首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曾勤  张爱清李勤 《功能材料》2007,38(A09):3667-3669
研究了碳纳米管(CNTs)/环氧树脂复合材料的分散性能及电性能。探讨了碳纳米管的含量、管径和稀释剂的用量对环氧树脂电学性能的影响,并用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对其进行表征。结果表明,碳纳米管的分散和含量对环氧树脂的电性能影响很大,而加入碳纳米管能够使环氧树脂由绝缘体变为导体(电阻率〈^10mΩ·cm)。  相似文献   

2.
In order to optimize carbon nanotube (CNT) dispersion state in fiber/epoxy composite, a novel kind of CNT organization form of continuous networks was designed. The present work mainly discussed the feasibility of preparing continuous CNT networks in composite: Fiber fabric was immersed into CNT aqueous solution (containing dispersant) followed by freeze drying and pyrolysis process, prior to epoxy infusion. The morphologies of fabric with CNTs were observed by Scanning Electron Microscope. The relationship between CNT networks and flowing epoxy resin was studied. Properties of composite, including out-of-plane electrical conductivity and interlaminar shear strength (ILSS), were measured. The results demonstrated that continuous and porous CNT networks formed by entangled CNTs could be assembled in fiber fabric. Most part of them were preserved in composite due to the robustness of network structures. The preserved CNT networks significantly improved out-of-plane electrical conductivity, and also have an effect on ILSS value.  相似文献   

3.
Two types of carbon nanotube nanocomposite strain sensors were prepared by mixing carbon nanotubes with epoxy (nanocomposite sensor) and sandwiching a carbon nanotube film between two epoxy layers (sandwich sensor). The conductivity, response and sensitivity to static and dynamic mechanical strains in these sensors were investigated. The nanocomposite sensor with 2–3 wt.% carbon nanotube demonstrated high sensitivity to mechanical strain and environmental temperature, with gauge factors of 5–8. On the other hand, a linear relationship between conductivity and dynamic mechanical strain was observed in the sandwich sensor. The sandwich sensor was also not sensitive to temperature although its strain sensitivity (gauge factor of about 3) was lower as compared with the nanocomposite sensor. Both sensors have excellent response to static and dynamic strains, thereby having great potential for strain sensing applications.  相似文献   

4.
A novel glucose biosensor based on a rigid and renewable carbon nanotube (CNT) based biocomposite is reported. The biosensor was based on the immobilization of glucose oxidase (GOx) within the CNT epoxy-composite matrix prepared by dispersion of multi-wall CNT inside the epoxy resin. The use of CNT, as the conductive part of the composite, ensures better incorporation of enzyme into the epoxy matrix and faster electron transfer rates between the enzyme and the transducer. Experimental results show that the CNT epoxy composite biosensor (GOx-CNTEC) offers an excellent sensitivity, reliable calibration profile, and stable electrochemical properties together with significantly lower detection potential (+0.55 V) than GOx-graphite epoxy composites (+0.90 V; difference deltaE = 0.35 V). The results obtained favorably compare to those of a glucose biosensor based on a graphite epoxy composite (GOx-GEC).  相似文献   

5.
In the present work, single-walled carbon nanotubes were dispersed within the matrix of carbon fabric reinforced epoxy composites in order to develop novel three phase carbon/epoxy/single-walled carbon nanotube composites. A combination of ultrasonication and high speed mechanical stirring at 2000 rpm was used to uniformly disperse carbon nanotubes in the epoxy resin. The state of carbon nanotube dispersion in the epoxy resin and within the nanocomposites was characterized with the help of optical microscopy and atomic force microscopy. Pure carbon/epoxy and three phase composites were characterized for mechanical properties (tensile and compressive) as well as for thermal and electrical conductivity. Fracture surfaces of composites after tensile test were also studied in order to investigate the effect of dispersed carbon nanotubes on the failure behavior of composites. Dispersion of only 0.1 wt% nanotubes in the matrix led to improvements of 95% in Young's modulus, 31% in tensile strength, 76% in compressive modulus and 41% in compressive strength of carbon/epoxy composites. In addition to that, electrical and thermal conductivity also improved significantly with addition of carbon nanotubes.  相似文献   

6.
In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.  相似文献   

7.
Thermoelectrics are materials capable of the solid-state conversion between thermal and electrical energy. Carbon nanotube/polymer composite thin films are known to exhibit thermoelectric effects, however, have a low figure of merit (ZT) of 0.02. In this work, we demonstrate individual composite films of multiwalled carbon nanotubes (MWNT)/polyvinylidene fluoride (PVDF) that are layered into multiple element modules that resemble a felt fabric. The thermoelectric voltage generated by these fabrics is the sum of contributions from each layer, resulting in increased power output. Since these fabrics have the potential to be cheaper, lighter, and more easily processed than the commonly used thermoelectric bismuth telluride, the overall performance of the fabric shows promise as a realistic alternative in a number of applications such as portable lightweight electronics.  相似文献   

8.
High-performance energy storage and sensing devices have been undergoing rapid development to meet the demand for portable and wearable electronic products,which require flexibility,extensibility,small volume and lightweight.In this study,we construct a lightweight and flexible self-powered sensing system by integrating a highly stretchable strain sensor with a high-performance asymmetric supercapacitor based on ZnSe/CoSe2//ECNT(ECNT:electrochemically activated carbon nanotube film).The ZnSe/CoSe2 two-dimentional nanosheets on carbon nanotube(CNT)films are synthesized through a simple and efficient strategy derived from ZnCo-based metal-organic frameworks(MOFs).The density functional theory(DFT)simulations show the higher conductivity of the ZnSe/CoSe2/CNT electrode than the CoSe2/CNT electrode.Due to the synergistic properties of self-supported two-dimentional ZnSe/CoSe2 nanosheets with high specific surface area and the high pathway of one-dimention CNTs,the nanocomposite electrode provides efficient transmission and short paths for electron/ion diffusion.The asymmetric supercapacitor provides a stable output power supply to the sensors that can precisely respond to strain and pressure changes.The sensor can also be attached to a garment for measuring a variety of joint movements.  相似文献   

9.
碳/环氧树脂复合材料应变率效应的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
选择两种铺设方式( SS)的T300/Epoxy(炭纤维/环氧树脂)层合板, 利用MTS试验机以及Hopkinson拉伸杆分别对其进行了准静态拉伸试验(应变率为10-5~10-4 s-1)、 中应变率拉伸试验(应变率为100 ~101s-1)和高速冲击拉伸试验(应变率为102~104s-1)。静态、 动态实验的试件形状及尺寸均相同。获得了不同应变率加载条件下T300/Epoxy的应力-应变曲线。基于所获得的应力-应变曲线, 讨论了应变率对炭纤维增强复合材料力学性能的影响。研究结果表明: 复合材料T300/Epoxy是应变率相关的材料; 层合板的铺设方向对其应变率效应有着显著的影响; 随着应变率的增加, 材料的强度及弹性模量有较大程度的提高, 但破坏应变有所降低。通过对试验结果的数据拟合, 提出了材料应变率相关的动态本构模型。   相似文献   

10.
A stretchable carbon nanotube strain sensor for human-motion detection   总被引:1,自引:0,他引:1  
Devices made from stretchable electronic materials could be incorporated into clothing or attached directly to the body. Such materials have typically been prepared by engineering conventional rigid materials such as silicon, rather than by developing new materials. Here, we report a class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes. When stretched, the nanotube films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges), with high durability, fast response and low creep. We assembled the carbon-nanotube sensors on stockings, bandages and gloves to fabricate devices that can detect different types of human motion, including movement, typing, breathing and speech.  相似文献   

11.
A floating-catalyst spray pyrolysis method was used to synthesize carbon nanotube (CNT) thin films. With the use of ammonium chloride as a pore-former and epoxy resin (EP) as an adhesive, CNT/EP composite films with a porous structure were prepared through the post-heat treatment. These films have excellent thermal insulation (0.029--0.048 W·m−1·K−1) at the thickness direction as well as a good thermal conductivity (40--60 W·m−1·K−1) in the film plane. This study provides a new film material for thermal control systems that demand a good thermal conductivity in the plane but outstanding thermal insulation at the thickness direction.  相似文献   

12.
We describe the reproducible fabrication of robust, vertically aligned multiwalled carbon nanotube (VACNT)/epoxy composite electrodes. The electrodes are characterized by cyclic voltammetry, impedance spectroscopy, and scanning electron and atomic force microscopies. Low background currents are obtained at the electrodes, and common redox probe molecules and NADH show excellent voltammetric behavior. When electrode performance deteriorates due to fouling, the electrode surfaces can be reproducibly renewed by mechanical polishing followed by O(2) plasma treatment. The electrochemical performance of the electrodes is maintained after more than 100 cycles of use and renewal.  相似文献   

13.
This paper reports a method for fabricating carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite superhydrophobic coatings. With toluene as a solvent, the coating is obtained directly by spray of CNT/PDMS/toluene suspension. The hydrophobicity and micro-/nanostructure of the coatings are studied with respect to the mass ratio (MR) of CNT to PDMS. Based on the multiscale morphology analysis, it is shown that the nanoscale roughness is essential for achieving superhydrophobicity. To form nanoscale rough surface and obtain a stable superhydrophobic coating, MR>0·3 is recommended. In addition, such coatings also show small slide angle, low adhesion strength and long term stability of the coated surface. The method reported in this study is low cost and especially suitable for engineering applications.  相似文献   

14.
实验采用混酸法对碳纳米管(CNTs)表面进行改性,制得羧基化碳纳米管(C-CNTs)。采用溶胶-凝胶法制得SiO2包覆的C-CNTs (C-CNTs@SiO2)、TiO2包覆的C-CNTs (C-CNTs@TiO2),采用原位聚合法制得聚苯胺包覆的C-CNTs (C-CNTs@ PANI)。以环氧树脂(EP)为基体材料,通过溶液共混法制备出C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料。研究结果表明:当掺杂相的质量分数均为1 wt%时,四种EP基复合材料的冲击强度相对于未改性的环氧树脂均有不同程度的提高。当掺杂相质量分数为7 wt%时,C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料的介电常数分别是EP的14.1、7.2、2.5、18.8倍。在实验掺杂量下,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的介电损耗几乎没有变化,C-CNTs@PANI/EP的介电损耗略有增加。当掺杂相质量分数为1 wt%时,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的击穿强度相对于EP明显提高。   相似文献   

15.
Untreated and acid-treated multi-walled carbon nanotubes (MWNT) were used to fabricate MWNT/epoxy composite samples by sonication technique. The effect of MWNT addition and their surface modification on the mechanical properties were investigated. Modified Halpin–Tasi equation was used to evaluate the Young’s modulus and tensile strength of the MWNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. There was a good correlation between the experimentally obtained Young’s modulus and tensile strength values and the modified Halpin–Tsai theory. The fracture surfaces of MWNT/epoxy composite samples were analyzed by scanning electron microscope.  相似文献   

16.
The major problem of conventional rigid sensor materials is difficulty to integer them into soft flexible structures. Piezoresistive polyisoprene/nanostructured carbon composite appears as promising materials for such application. Previous research approved high structure carbon black and carbon nanotube filled composites as finger pressure sensitive piezoresistive materials. Carbon nanotubes originate with variable length to width ratio and high electric conductivity in longitudinal direction of the tubes, which theoretically should make it possible to obtain electric percolation in polymercarbon nanotube composites at very low loads of filler. However recent experience with mechanically dispersed carbon nanotubes shows quite high values of percolation threshold and specific sensing properties. In this work we present an attempt to use ultrasound for improved dispersion of the filler in a piezoresistive polyisoprene-multi wall carbon nanotube composite as well polyisoprene-high structure carbon black composite. The noticeable shift of percolation threshold for both types of composites have been achieved. The piezoresistive behavior of sonicated composites have been determined and compared with mechanically mixed ones. The differences have been evaluated and explained.  相似文献   

17.
Most of the current techniques for detection of dopamine exploit its ease of oxidation. However, the oxidative approaches suffer from a common problem. The products of dopamine oxidation can react with ascorbic acid present in samples and regenerate dopamine again, which severely limits the accuracy of detection. In this paper, we report a nonoxidative approach to electrochemically detect dopamine with high sensitivity and selectivity. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The binding of dopamine to the boronic acid groups of the polymer with large affinity affects the electrochemical properties of the polyaniline backbone, which act as the transduction mechanism of this nonoxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized, single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in physiological buffer, and the large surface area of the carbon nanotubes largely increased the density of the boronic acid receptors. The high sensitivity along with the improved selectivity of this sensing approach is a significant step forward toward molecular diagnosis of Parkinson's disease.  相似文献   

18.
The performance of a composite material system depends critically on the interfacial characteristics of the reinforcement and the matrix material. In this study, the interfacial shearing strength (IFSS) of a composite with an epoxy matrix and a novel carbon nanotube/carbon fiber (CNT/CF) multi-scale reinforcement was determined by single fiber-microdroplet tensile test, and the interfacial reinforcing mechanisms of the composite were discussed. Results show that the IFSS of the epoxy composite reinforced by CNT/CF is as high as 106.55 MPa, which is 150% higher than that of the as-received T300 fiber composite. And the main interfacial reinforcing mechanisms of this novel composite could be interpreted as chemical bonding, Van der Waals binding, mechanical interlocking, and surface wetting.  相似文献   

19.
The modern strain sensors currently used in monitoring the structural properties of such tank structures suffer from a number of limitations, including a low level of sensitivity and detection. In this work, we present a novel method of structural monitoring utilizing a thin film of carbon nanotubes carefully deposited on carbon fiber composites. The nanotube film and raw material were first characterized via microscopy and spectroscopy techniques. Bowing of the tank wall was simulated by applying a three-point bend load test, which was found to strongly affect the electrical resistance of the carbon nanotube film. These measurements were very reproducible, as the film resistance returned to its original value each time that the load was slowly released. We believe that these highly sensitive carbon nanotube films are potential candidates as replacements for the current health-monitoring sensors.  相似文献   

20.
The preparation of a model glass-fibre/epoxy composite with single-walled carbon nanotubes (SWNTs) incorporated as a strain sensor on the fibre surface is described. A micromechanical study of stress transfer at the fibre–matrix interface followed using Raman spectroscopy properties is reported. The SWNTs were distributed along the fibre surface either by dispersing them in an amino-silane coupling agent or coating with an epoxy resin solution containing the SWNTs. The point-by-point mapping of the fibre strain in single fibre fragmentation tests has been undertaken for the first time using SWNTs on the fibres and the interfacial shear stress distribution along the fibre length was determined using the embedded SWNTs. The behaviour was found to be consistent with the classical shear-lag model. The effects of SWNT type and preparation procedure on the sensitivity of the technique were evaluated and optimized from single fibre deformation tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号