首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Digital light processing (DLP) can produce small series ceramic parts with complex geometries and tiny structures without the high cost of molds usually associated with traditional ceramic processing. However, the availability of feedstock of different ceramics for the technique is still limited. Mullite-zirconia composites are refractory materials with diverse applications, nevertheless, their 3D printing has never been reported. In this work, alumina and zircon were used as raw materials for additive manufacturing by DLP followed by in situ mullite and zirconia formation. Thus, coarse zircon powder was milled to submicrometric size, alumina-zircon photosensitive slurries were prepared and characterized, parts were manufactured in a commercial DLP 3D printer, debound, and sintered at different temperatures. The printed parts sintered at 1600 °C completed the reaction sintering and reached a flexural strength of 84 ± 13 MPa. The process proved capable of producing detailed parts that would be unfeasible by other manufacturing methods.  相似文献   

2.
Ceramic core is an essential component in the precise casting of hollow turbine blades, and the investigation on 3D printing of silica-based ceramic cores is crucial to the development of aviation industry; however, they are suffered from difficulty in high-temperature strength and structural anisotropy. In present work, silica-based ceramic cores were prepared via DLP stereolithography 3D printing, and the anisotropy management on microstructures and properties were explored based on the particle size of fused silica powders. In 3D printed ceramic cores with coarse powders, significant anisotropy was displayed exhibiting multilayer structure with large gaps in horizontal printing and uniform porous microstructure in the vertical direction, which was further explained by the particle deposition in printing. With finer silica powders, the uniformity in the microstructures was highly improved, attributed to the enhanced particle dispersion in ceramic slurries and promoted interlayer particle rearrangement during sintering. To evaluate the anisotropy in mechanical property, the ratio of vertical strength to horizontal strength (σVH) was proposed, which rose from 0.48 to 0.86 as the particle size decreased from 35 µm to 5 µm, suggesting enhanced mechanical uniformity. While the average particle size of silica powders was 5 µm, the flexure strengths of ceramic cores in different directions were up to 18.5 MPa and 16.3 MPa at 1540 °C with σVH ratio of 0.88, which well satisfied the demands for the casting of turbine blades. This work inspires new guidance on the anisotropy management in ceramic cores prepared by 3D printing, and provides new technology for fabrication of silica-based ceramic cores with superior high temperature mechanical properties.  相似文献   

3.
《Ceramics International》2023,49(15):24861-24867
Ceramic cores are key components to form inner hollow structures in aero-engine blades, and 3D printing is an ideal molding technology for ceramic cores. In this work, silica-based ceramic cores are fabricate via 3D printing of digital light processing (DLP) stereolithography, and the anisotropy in microstructure and property are controlled by aluminum powders. The ceramic cores without aluminum powders exhibit anisotropic microstructure with interlayer gaps, which get narrower and disappear with doping of 7.5–10 wt% of aluminum powders, due to the volume expansion during oxidization reaction of aluminum powders filling the interlayer gaps. The anisotropy in mechanical property is rely on the printing direction, and the ratio of strength in different directions (σVH) is put forward to value the mechanical anisotropy; the ratios rise from 0.40 to 0.92 at room temperature and 0.51 to 0.97 at 1540 °C, as 7.5 wt% of aluminum is doped, and the optimized ceramic cores show high-temperature strengths of 16.6 MPa and 16.1 MPa in different printing directions. Even though ceramic cores with 10 wt% of aluminum show uniform microstructure and higher σVH ratio, the weak particle bonding within printing layers limits their mechanical property, and the strengths decrease to 13.8 MPa and 13.4 MPa at 1540 °C. This work inspires a new technique to excellent high-temperature mechanical properties with anisotropy control in 3D printing of ceramic cores.  相似文献   

4.
Digital Light Processing (DLP) is a promising technique for the preparation of ceramic parts with complex shapes and high accuracy. In this study, 3 mol% yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) UV-curable slurries were prepared and printed via DLP. Two different solid loadings (40.5 and 43.6 vol%, respectively) and printing directions were investigated to assess the influence of these parameters on physical and mechanical properties of the sintered parts. Zirconia samples were sintered at 1550 °C for 1 h, achieving a very high relative density (99.2%TD), regardless of solid loading and printing direction. FE-SEM micrographs shown a homogeneous and defect-free cross section with an average grains size of 0.56 ± 0.19 µm. Finally, mechanical properties were influenced by printing direction and zirconia vol%. Indeed, the composition with the higher solid loading (i.e. 43.6 vol%) had the highest three-point flexural strength (751 ± 83 MPa) when tested perpendicular to the printing plane.  相似文献   

5.
《Ceramics International》2023,49(15):25016-25024
Stereolithography additive manufacturing of SiC ceramic composites has received much attention. However, the forming efficiency and mechanical properties of their products need to be improved. This study aimed to prepare SiC ceramic composites with complex shapes and high flexural strength using a combination of digital light processing (DLP) and reactive solution infiltration process (RMI). A low-absorbance SiO2 cladding layer was formed on the surface of SiC powder through a non-homogeneous precipitation process. With the densification of the cladding layer at high temperatures, SiO2-coated SiC composite powder was used to formulate a photosensitive ceramic slurry with a solid content of 44 vol%. The resulting slurry exhibited a considerable improvement in curing thickness and rate and was used to mold ceramic green body with a single-layer slicing thickness of 100 μm using DLP. The ceramic blanks were then sintered and densified using a carbon thermal reduction combined with liquid silica infiltration (LSI) process, resulting in SiC ceramic composites with a density of 2.87 g/cm3 and an average flexural strength of 267.52 ± 2.5 MPa. Therefore, the proposed approach can reduce the manufacturing cycle and cost of SiC ceramic composites.  相似文献   

6.
Complex silicon carbide (SiC) ceramic components are difficult to fabricate due to their strong covalent bonds. Binder jetting (BJ) additive manufacturing has the outstanding advantages of high forming efficiency and no thermal deformation, especially suitable for printing complex structure SiC components. This study tried to obtain low silicon content silicon carbide ceramics by binder jetting followed by phenolic resin impregnation and pyrolysis (PRIP) and liquid silicon infiltration (LSI). BJ was used for the SiC green parts fabrication, and the highest compressive strength (7.7 ± 0.3 MPa) and lowest dimensional deviations (1.2–1.6 mm) were obtained with the printing layer thickness of 0.15 mm. Subsequently, PRIP treatments were introduced to increase the carbon content for the following LSI process. As the number of PRIP cycles increased, the carbon density of SiC/C preform increased and the porosity decreased. After the LSI treatment, the final Si-SiC composites processed with 2 PIRP cycles reached the highest flexural strength (257 ± 14.26 MPa) and the best wear resistance. This was attributed to the low residual silicon content (10.2 vol%) and almost no residual carbon. Furthermore, several complex structural components were fabricated using these methods. The preparation of complex components verifies the feasibility of BJ and LSI for manufacturing high-strength and high-precision SiC ceramics. Besides, this work hopes to provide technical guidance for the preparation of complex SiC composites in the future.  相似文献   

7.
3D printing, a competitive manufacturing technology, has opened up new possibilities for fabricating complex structure ceramic components, but near-net forming is still difficult. This work presented a kind of near-net forming lithium aluminosilicate (LAS) glass-ceramics using direct ink writing (DIW) method by controlling thermal shrinkage. To achieve this goal, a high solid-loading ink was prepared using low thermal expansion LAS glass-ceramic powder containing β-spodumene as raw material. And we comprehensively evaluated the effects of the rheological properties of the slurry and sintering process on the thermal and mechanical performances. Attributed to the restricted sintering activity and thermal deformation of LAS glass-ceramic particles, the 3D-printed samples sintered at 1300 C for 2 h showed an average linear shrinkage of 0.84% with a flexural strength of 45.59 ± 2.82 MPa and a compressive strength of 65.58 ± 3.99 MPa, respectively. The results suggested that LAS glass-ceramics were excellent candidate materials for near-net forming 3D printing.  相似文献   

8.
We report the physical and mechanical properties of ceramic composite materials fabricated by binder jet 3D printing (BJ3DP) with silicon carbide (SiC) powders, followed by phenolic resin infiltration and pyrolysis (IP) to generate carbon, and a final reactive silicon melt infiltration step. After two phenolic resin infiltration and pyrolysis cycles; porosity was less than 2%, Young's modulus was close to 300 GPa, and the flexural strength was 517.6 ± 24.8 MPa. However, diminishing returns were obtained after more than two phenolic resin infiltration and pyrolysis cycles as surface pores in carbon were closed upon the formation of SiC, resulting in reaction choking and residual-free carbon and porosity. The instantaneous coefficient of thermal expansion of the composite was found to be independent of the number of phenolic IP cycles and had values of between 4.2 and 5.0 ppm/°C between 300 and 1000℃, whereas the thermal conductivity was found to have a weak dependence on the number of phenolic IP cycles. While the manufacturing procedures described here yielded highly dense, gas impermeable, siliconized SiC composites with properties comparable to those of bulk siliconized silicon carbide processed according to conventional techniques, BJ3DP enables the manufacture of objects with complex shape, unlike conventional techniques.  相似文献   

9.
Increasing demand in automotive, construction, and medical industries for materials with reduced weight and high mechanical durability has given rise to porous materials and composites. Materials combining nano- and microporosity and a well-defined cellular macroporous architecture offer great potential weight reduction while maintaining mechanical durability. To achieve predictable mechanical performance, it is essential to apply experimental and computational efforts to precisely describe material structure–properties relationships. This study explores polymer structures with polymerization-inherited porosity and well-defined macroporous geometry, fabricated via digital light processing (DLP) 3Dprinting. Pore size and relative density are varied by ink composition and printing parameters to track their influence on the structure stiffness. Simulated stiffness values for the base polymer correspond to the experimentally determined elastic properties, showing Young's moduli of 554–722 MPa depending on the cosolvent ratio, which confirms the structure–properties relationship. Macroporosity is introduced in the form of a 3D tetrahedral bending-dominated architecture with the resulting specific Young's moduli of 79.5 MPa cm3 g−1, comparable to foams. To merge the gap in stiffnesses, further investigation of structure–property relationships of various 3D–printed lattice architectures, as well as its application to other stereolithography methods to eliminate the negative effects from printing artifacts and resolution limit of the DLP 3D-printing, are envisioned.  相似文献   

10.
《Ceramics International》2023,49(15):25216-25224
Ceramic cores are essential intermediate mediums in casting superalloy hollow turbine blades. The developing of additive manufacturing (AM) technology provides a new approach for the preparation of ceramic cores with complex structure. In this study, alumina oxide (Al2O3) ceramic cores with fine complex geometric shapes were fabricated by digital light processing (DLP) in high resolution. The maximum solid content of 70 vol% of ceramic slurry was adopted in the printing process, which is important for the regulation of deformations and mechanical properties. The effects of the printing parameters, including exposure intensity, printing layer thickness and sintering temperature on the microstructures and mechanical properties of printed samples were investigated. The decrease of residual stress and similar shrinkage in X, Y, and Z directions could be obtained by adjusting the printing parameters, which are crucial to prepare complex ceramic cores with high quality. Besides, the flexure strength and open porosity of ceramic cores reached 34.84 MPa and 26.94%, respectively, which were supposed to meet the requirement of ceramic cores for the fabrication of superalloy blades.  相似文献   

11.
Digital light processing (DLP) 3D printing has been utilized to fabricate controlled porous β-tricalcium phosphate (β-TCP) scaffolds, which promote cell adhesion and angiogenesis during bone regeneration. However, the current limitation of DLP 3D printing for the fabrication of β-TCP scaffold is how to prepare a low viscosity ceramic slurry and remove the toxicity of residual non-polymerized slurry. The present study has developed a low viscosity ceramic slurry system by mixing β-TCP with photosensitive acrylate resin, and the viscosity of slurry is about 3 Pa s and the solid content of β-TCP can be as high as 60 wt%. After optimizing the ratio of slurry, printing, degreasing and sintering processes, the maximum compressive strength of the DLP printed scaffolds reaches up to 9.89 MPa, while the porosity keeps ca. 40%. According to the proliferation of cells, it confirms the preserved biocompatibility of DLP-fabricated β-TCP scaffolds. These porous scaffolds made by DLP 3D printing technology is of great significance for bone regeneration, and will also help to expand the application of DLP technology in biomedical field.  相似文献   

12.
In this study, we present a DLP 3D-printing strategy for the fabrication of SiCN ceramic matrix composites (CMCs). The polysilazane-based preceramic polymer containing inert fillers was UV-cured into a green body and then converted to SiCN CMCs after pyrolysis. The introduced fillers (Si3N4 particles and Si3N4 whiskers) as reinforcements are well dispersed in the matrix, which can not only effectively reduce the linear shrinkage and weight loss, but also greatly improve the mechanical properties of the SiCN CMCs. The bending strength of the SiCN CMCs reinforced with 10 wt% Si3N4 whiskers (without surface polished) reached 180.7 ± 15.6 MPa. Furthermore, the effect of fillers content on microstructure and porosity of the SiCN CMCs are discussed, and it was found that the excessive fillers led to increased pore defects and decreased continuity of the matrix, thereby reducing the mechanical properties of the SiCN CMCs. This strategy provides a promising ceramic manufacturing technique to fabricate polymer‐derived CMCs with complex-shaped and high-performance for potential demanding applications.  相似文献   

13.
《Ceramics International》2020,46(7):8682-8688
Digital Light Processing (DLP) is a promising approach to fabricate delicate ceramic components with high-fidelity structural features. In this work, the alumina and zirconia/alumina ceramic suspensions with low viscosity and high solid loading (40 vol%) were prepared specifically for DLP 3D printing. After debinding and sintering, the final parts were obtained without any defects. The surface morphologies and mechanical properties of alumina (Al2O3) and zirconia toughened alumina (ZTA) composites were investigated and the results showed that the final parts exhibited high relative densities and good interlayer combination at the sintering temperature of 1600 °C. Comparing with the Al2O3, the ZTA composites exhibited significantly enhanced density (99.4%), bending strength (516.7 MPa) and indentation fracture toughness (7.76 MPa m1/2).  相似文献   

14.
Tape casting is a reliable and cost effective method for producing thin ceramic sheets with uniform and tailored microstructures, especially for multilayered composite materials. In this paper, SiC/C tapes were prepared by tape casting method. After lamination and binder removal, porous preforms with homogeneous microstructure and narrow pore sizes distribution were developed. Then, dense reaction bonded SiC ceramics (RBSCs) were obtained by silicon infiltration into these preforms. The highest bending strength of the RBSCs can reach 410 ± 14 MPa. Moreover, impregnation of phenolic resin into the porous preforms before silicon infiltration could help to develop RBSCs with lower residual silicon content and higher flexural strength which can be as high as 598 ± 112 MPa.  相似文献   

15.
选用3D打印制备的碳纤维增强碳化硅陶瓷基(Cf/SiC)复合材料被广泛应用在航空航天、国防军事等重大领域。碳纤维(Cf)作为陶瓷基复合材料的主要候选增强体之一,由于表面惰性的存在,为了提高其与碳化硅(SiC)陶瓷基体的粘附性,对原料Cf的表面改性工作是十分必要的。粉末原料的高效改性制备是3D打印成型陶瓷的重要途径。本文综述了近年来国内外针对Cf改性的各种方法及特点,对Cf/SiC复合材料的3D打印成型及其高效制备方法进行归纳总结。  相似文献   

16.
SiC ceramic lattice structures (CLSs) via additive manufacturing (AM) have been recognized as potential candidates in engineering fields owing to their various merits. Compared with traditional SiC CLSs, SiC triply periodic minimal surface (TPMS) CLSs could possess more outstanding properties, making them more promising for wider applications. Since SiC CLSs are hard to be fabricated through stereolithography techniques because of inferior light performance, the laser powder bed fusion (LPBF) process via selective sintering is an effective method to prepare near-net-shaped SiC TPMS lattices. As the mechanical performances of lattice structures are the foundation for future practical applications, it is of great significance to optimize the preparation process, thus improving the mechanical properties of SiC TPMS structures. In this work, the optimal printing parameters of the LPBF and liquid silicon infiltration process for SiC ceramic TPMS CLSs with three different volume fractions were systematically illustrated and analyzed. The effects of the printing parameters and carbon densities on the fabrication accuracy, microstructure, and mechanical performance of SiC TPMS CLSs were defined. The mechanism of the reactive sintering process for the SiC TPMS lattice structure was revealed. The results reveal that Si/SiC TPMS CLSs with optimum preparation have superior manufacturing accuracy (most less than 6%), relatively high bulk densities (about 2.75 g/cm3), low residual Si content (6.01%), and excellent mechanical properties (5.67, 15.4, and 44.0 MPa for Si/SiC TPMS CLSs with 25%, 40%, and 55% volume fractions, respectively).  相似文献   

17.
Silicon carbide is one of the most important high-performance engineering ceramics. However, SiC ceramics with complex structure and high mechanical performance are difficult to shape, sinter, and process. Additive manufacturing is expected to solve the above problems, but the photosensitive slurry with low solid content leads to high residual Si content and low strength of final components. Here, we presented one novel strategy to prepare high-strength SiC components with complex structure by introducing quasi-spherical diamond powder as the high-density carbon source through vat photopolymerization 3D printing technology and reactive melt infiltration process. The final RB–SiC ceramics exhibited a specific flexural strength of 312.45 ± 18.75 MPa and elastic modulus of 359.16 ± 4.57 GPa, demonstrating one of the highest flexural strength and elastic modules among those reported for 3D-printed SiC composites. Owing to the high mechanical performance and simple fabrication process, this strategy has significant advantages in the manufacturing of structural SiC ceramics.  相似文献   

18.
The emergence of digital light processing (DLP) 3D printing technology creates favorable conditions for the preparation of complex structure silicon nitride (Si3N4) ceramics. However, the introduction of photosensitive resin also makes the Si3N4 ceramics prepared by 3D printing have low density and poor mechanical properties. In this study, high-density Si3N4 ceramics were prepared at low temperatures by combining DLP 3D printing with precursor infiltration and pyrolysis (PIP). The Si3N4 photocurable slurry with high solid content and high stability was prepared based on the optimal design of slurry components. Si3N4 green parts were successfully printed and formed by setting appropriate printing parameters. The debinding process of printed green parts was further studied, and the results showed that samples without defects and obvious deformation can be obtained by setting the heating rate at .1°C/min. The effect of the PIP cycle on the microstructure and mechanical properties of the Si3N4 ceramics was studied. The experimental results showed that the mass change and open porosity of the samples tended to be stable after eight PIP cycles, and the open porosity, density, and bending strength of the Si3N4 ceramics were 1.30% (reduced by 97%), 2.64 g/cm3 (increased by 43.5%), and 162.35 MPa.  相似文献   

19.
《Ceramics International》2020,46(7):8745-8753
Digital light processing (DLP)-stereolithography three-dimensional (3D) printing is a well known technique for fabricating components with complex geometries. However, the application of DLP 3D printing to functional ceramics such as 8 mol% yttria-stabilized zirconia (8YSZ), which is one of the most extensively used electrolyte materials for solid oxide fuel cells, is still a great challenge. Therefore, the fabrication of fully 8YSZ monoliths via DLP 3D printing was attempted herein, including the preparation of UV-curable ceramic suspensions, shaping of green bodies, and debinding and sintering. The results show that intact green bodies printed using a 30 vol% 8YSZ-photosensitive resin suspension with 0.1 wt% oleic acid as the dispersant under the optimized printing conditions was sufficiently dense without connected pores after vacuum debinding and sintering in air. The successful fabrication of 8YSZ monoliths with design flexibility via 3D printing provides a simple method for preparing functional ceramic components and may expand the application of 3D printing technology to the energy field.  相似文献   

20.
Silicon-infiltrated silicon carbide (SiSiC) is an important technical ceramic material for several demanding applications such as heat exchangers, nozzles or mechanical seals. However, shaping and machining tools are quickly worn down, due to the application of hard abrasive silicon carbide (SiC) particles as part of the conventional starting compounds for monolithic SiSiC ceramics. Within this work, an alternative route fabricating SiSiC without primary SiC particles and with low residual carbon contents derived from thermoplastic wood polymer composites (WPC) is described. By varying the proportions of the raw materials, the phase compositions of the SiC ceramic could be modified. A reduction in the average wood particle size from 120 to 60 µm led to a homogenous SiSiC with high SiC content. SiSiC with flexural strengths up to 230 MPa and a Weibull modulus of 16 were developed. The residual carbon content could be reduced below 1 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号