首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(4):5119-5129
The spark plasma sintering (SPS) technique was found to effectively improve the mechanical properties of TiB2–SiC ceramic by forming a unique interlocking structure. This study investigated the phase transition process of the hexagonal micro-platelets TiB2 powders with self-assembled structure during the molten-salt-mediated carbothermal reduction and its effect on promoting the mechanical properties of TiB2-based ceramics. It was found that the SPS approach ensured a highly densified TiB2–SiC ceramics with enhanced Vickers hardness of 21.0 ± 1.3 GPa and fracture resistance of 7.8 ± 0.3 MPa m1/2. The performance enhancement of the resultant TiB2–SiC composite was attributed to the interlocking structure from the original anisotropic TiB2 powders, which could effectively absorb the energy and facilitate the crack deflection.  相似文献   

2.
The oxidation resistance of SiC–BN composites with different BN content hot-pressed from Si3N4, B4C and C was investigated. The oxidized products of SiC and BN were identified to be SiO2, C and B2O3, N2. SiO2 and B2O3 could further form a borosilicate glass which covered the surfaces of the samples and withstood oxidation because of its flowability and self-healing. The oxidation resistance of the SiC–BN composites in static air atmosphere deteriorated with the increase of temperature as well as of the BN content.  相似文献   

3.
In this paper, synthesis of novel super hard and high performance composites of titanium silicon carbide–cubic boron nitride (Ti3SiC2–cBN) was evaluated at three different conditions: (a) high pressure synthesis at ~ 4.5 GPa, (b) hot pressing at ~ 35 MPa, and (c) sintering under ambient pressure (0.1 MPa) in a tube furnace. From the analysis of experimental results, the authors report that the novel Ti3SiC2–cBN composites can be successfully fabricated at 1050 °C under a pressure of ~ 4.5 GPa from the mixture of Ti3SiC2 powders and cBN powders. The subsequent analysis of the microstructure and hardness studies indicates that these composites are promising candidates for super hard materials.  相似文献   

4.
《Ceramics International》2020,46(8):11622-11630
In the last decades, the production of ultra-high temperature composites with improved thermo-mechanical properties has attracted much attention. This study focuses on the effect of graphite nano-flakes addition on the microstructure, densification, and thermal characteristics of TiB2–25 vol% SiC composite. The samples were manufactured through spark plasma sintering process under the sintering conditions of 1800 °C/7 min/40 MPa. Scanning electron microscopy images demonstrated a homogenous dispersion of graphite flakes within the TiB2–SiC composite causing a betterment in the densification process. The thermal diffusivity of the specimens was gained via the laser flash technique. The addition of graphite nano-flakes as a dopant in TiB2–SiC did not change the thermal diffusivity. Consequently, the remarkable thermal conductivity of TiB2–SiC remained intact. It seems that the finer grains and more interfaces obstruct the heat flow in TiB2–SiC–graphite composites. Adding a small amount of graphite nano-flakes enhances the densification of the mentioned composite by preventing the grain growth.  相似文献   

5.
《应用陶瓷进展》2013,112(5):282-287
Without impurity phases detected, fully dense (TiB2?+?SiC)/Ti3SiC2 composites have been successfully synthesised by in-situ reaction hot pressing. The effect of TiB2 content on phase composite, sintering properties, microstructure, and mechanical properties of the composites were thoroughly investigated. With TiB2 content increasing from 0 to 50?vol.-%, the flexural strength increases first and then decreases, whereas fracture toughness, hardness and modulus show a linear increase. The maximum strength of 826?MPa was obtained at 20?vol.-% TiB2. On the whole, the (TiB2?+?SiC)/Ti3SiC2 composites exhibit a superior comprehensive mechanical properties superior to other reported Ti3SiC2-based composites reinforced by singular reinforcement. The significant strengthening and toughening effect induced by the in-situ incorporated TiB2 can be ascribed to the unique properties of TiB2 and the synergistic action of many mechanisms including particle reinforcement, pulling out of grains, crack deflection and grain refinement strengthening.  相似文献   

6.
Dense ZrB2–SiC composite was synthesized by spark plasma sintering with 10 vol.% TaSi2 additive. When sintered at 1600 °C, core–shell structure was found existing in the sample. The core was ZrB2 and the shell was (Zr,Ta)B2 solid solution. This result was ascribed to the decomposition of TaSi2 and the solid solution of Ta atoms into ZrB2 grains. The solid solution process probably decreased the boride grain boundary active energy, contributing to the formation of coherent structure of grain boundaries. Additionally, the existence of dislocations in the boride grains indicated that the applied pressure also imposed an important effect on the densification of composite. When sintered at 1800 °C, owing to the atom diffusion, Ta atoms homogeneously distributed in the boride grains, leading to the disappearance of core–shell structure. The boundaries between (Zr,Ta)B2 grains, as well as between boride grains and SiC particles, were still clear without amorphous phase existing.  相似文献   

7.
The TaB2–27.9 vol% SiC composite was synthesized by self-propagating high-temperature synthesis starting from mechanically activated Ta, B4C and Si reactants. The obtained powders were spark plasma sintered at 1800 °C and 20 MPa for 30 min total time, thus obtaining a 96% dense product. The latter one was characterized in terms of microstructure, hardness, fracture toughness, and oxidation resistance. The obtained results, particularly the fracture toughness, are promising when compared to those related to analogous materials reported in the literature and fabricated with similar and different processing routes.  相似文献   

8.
The relative wear resistance of αSiC–TiB2 composites prepared by reactive sintering was investigated on a pin on flat tribometer, in air and in presence of water. Experimental results show that the composite materials are less worn than monolithic SiC. The wear mechanisms in air and water are identified.In air, a protective oxidised debris layer is formed on the composites, whereas roller formation was observed with SiC. In water, the surface of the composites is polished, whereas SiC is worn by fragile ruptures (cleavages).  相似文献   

9.
Non-isothermal, isothermal and cyclic oxidation behavior of hot pressed ZrB2–20 (vol.%) SiC (ZS) and HfB2–20 SiC (HS) composites have been compared. Studies involving heating in thermogravimetric analyzer have shown sharp mass increases at 740 and 1180 °C for ZS, and mass gain till 1100 °C followed by loss for HS. Isothermal oxidation tests for 1, 24 and 100 h durations at 1200 or 1300 °C have shown formation of partially and completely stable oxide scales after ~24 h exposure for ZS and HS, respectively. X-ray diffraction, scanning electron microscopy and energy or wavelength dispersive spectroscopy has confirmed presence of ZrO2 or HfO2 in oxide scales of ZS or HS, respectively, besides B2O3–SiO2. Degradation appears more severe in isothermally oxidized ZS due to phase transformations in ZrO2; and is worse in HS on cyclic oxidation at 1300 °C with air cooling, because of higher thermal residual stresses in its oxide scale.  相似文献   

10.
This work summarises the influence of the original particle-size of the SiC powder on the mechanical properties of silicon infiltrated SiC (SiC-Si) composite. These composites are based on a defined SiC particle-size structure. Using α-SiC powders with a mean particle-size of 12·8, 6·4, 4·5 and 3 μm, a clear linear enhancement of the bending strength with decrease of SiC-particle-size was observed. However, a further decrease of the SiC particle-size (from 3 to 0·5 μm) brought no increase of the strength and toughness, respectively. ©  相似文献   

11.
ZrB2–SiC–BN ceramics were fabricated by hot-pressing under argon at 1800 °C and 23 MPa pressure. The microstructure, mechanical and oxidation resistance properties of the composite were investigated. The flexural strength and fracture toughness of ZrB2–SiC–BN (40 vol%ZrB2–25 vol%SiC–35 vol%BN) composite were 378 MPa and 4.1 MPa m1/2, respectively. The former increased by 34% and the latter decreased by 15% compared to those of the conventional ZrB2–SiC (80 vol%ZrB2–20 vol%SiC). Noticeably, the hardness decreased tremendously by about 67% and the machinability improved noticeably compared to the relative property of the ZrB2–SiC ceramic. The anisothermal and isothermal oxidation behaviors of ZrB2–SiC–BN composites from 1100 to 1500 °C in air atmosphere showed that the weight gain of the 80 vol%ZrB2–20 vol%SiC and 43.1 vol%ZrB2–26.9 vol%SiC–30 vol%BN composites after oxidation at 1500 °C for 5 h were 0.0714 and 0.0268 g/cm2, respectively, which indicates that the addition of the BN enhances oxidation resistance of ZrB2–SiC composite. The improved oxidation resistance is attributed to the formation of ample liquid borosilicate film below 1300 °C and a compact film of zirconium silicate above 1300 °C. The formed borosilicate and zirconium silicate on the surface of ZrB2–SiC–BN ceramics act as an effective barriers for further diffusion of oxygen into the fresh interface of ZrB2–SiC–BN.  相似文献   

12.
Spark plasma sintering (SPS) of ZrC–SiC composite powders in the presence of LiYO2 sintering additive was studied. The starting powders were obtained by a carbothermal reduction (CTR) of natural mineral zircon (ZrSiO4), which provided an intimate mixing of in-situ created ZrC and SiC powders. This composite powder and LiYO2 as additive were densified by spark plasma sintering. Microstructural features of the composite were investigated by XRD, SEM/EDS and AFM analysis. The sintered composite material possesses promising mechanical properties and excellent cavitation resistance which was observed with a cavitation erosion test. The values of Vickers microhardness and fracture toughness of the composite material are 20.7 GPa and 5.07 MPam1/2, respectively.  相似文献   

13.
《Ceramics International》2016,42(7):8376-8384
TiB2–TiC–Ti3SiC2 porous composites were prepared through a plasma heating reaction using powder mixtures of Ti, B4C SiC whiskers (SiCw) and SiC particles (SiCp). The effects of the SiCw and SiCp content on pore structures, phase constituents, microstructure, and crystal morphology of TiC were studied. The results show that TiC, TiB, Ti3B4 phases are formed within the 5Ti+B4C system. With the addition of SiCw and SiCp, the TiB and Ti3B4 phases are reduced, sometimes even disappeared. Interestingly, the content of TiB2 and TiC increased, resulting in Ti3SiC2 and TiSi2 being formed. The porosity of composites increases notably with the addition of SiCw. However, with the increase of SiCp, the porosity of the composites first decreases, followed by an increase. After adding the specified amount of SiCw/SiCp, the compressive strength of composites are improved significantly. Additionally, the pore size of the composites are decreased significantly with the addition of SiCw/SiCp. During the plasma heating process, some Si atoms will diffuse into the TiC lattice, which in turn made the cubic TiC grains into hexagonal lamellar TiC or Ti3SiC2 grains.  相似文献   

14.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

15.
SiO2–SiC composite particles were prepared through a hybrid sol–gel precursor process. Compacts were prepared by using a conventional sintering process. The techniques of DSC–TG, SEM and XRD were use to characterize the composite particles and the sintered compacts. It was found that a core–shell structure was constructed in the composite particles with cores of SiC and shells of amorphous SiO2. Nucleation of SiO2 occurred at about 1200 °C. The optimized sintering temperature for 30SiO2–70SiC (vol.%) composites was about 1400 °C with a relatively homogeneous microstructure. The maximum density was about 2.03 g cm?3.  相似文献   

16.
Double crosslinked chitosan–zeolite (CZ-2) and noncrosslinked chitosan–zeolite (CZ-0) composites were prepared and characterized by using Fourier transform infrared (FTIR) spectrometer, surface area analyzer, scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) spectrometer, thermogravimetric analyzer (TGA), X-ray diffraction analyzer (XRD) and carbon, hydrogen, nitrogen (CHN) analyzer. After crosslinking, CZ-2 showed a reduction in surface area and CHN content in comparison to chitosan, zeolite, and CZ-0. Crosslinking resulted in improved stability of CZ-2 in distilled water, acetic acid and NaOH as CZ-2 recorded the lowest percentage of swelling. XRD diffractograms confirmed the formation of composites as there was a marked difference in the peak intensity at 2θ = 19.8°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
SiC–BN composites were fabricated by conventional hot-pressing from β-SiC and h-BN nanopowders with 2?vol% yttria as a sintering additive. Electrical and thermal properties of the composites were investigated as a function of initial BN content. Owing to the nanosize of the starting powders, the grain-growth-assisted N-doping of the SiC lattice was significantly enhanced during liquid-phase sintering, yielding the highest-reported electrical conductivity of ~124 (Ω?cm)?1 for a SiC–4-vol% BN composite. The typical values of electrical resistivity and thermal conductivity of the SiC–4-vol% BN composite at room temperature were 8.1?×?10?3 Ω?cm and 92.4?W?m?1 K?1, respectively.  相似文献   

18.
TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–2573 K. Effects of TiN and TiB2 content on relative density, microstructure, and mechanical properties were investigated. Above 2373 K, TiN–TiB2 composites exhibited relative densities over 95%. A high density of 99.7% was obtained at 2573 K with 20–30 vol% TiB2. Shrinkage of the TiN–70 vol% TiB2 composite was the highest at 1573–2473 K. For the TiN–70 vol% TiB2 composite prepared at 1973–2373 K, TiN grains were small, while at 2573 K, TiB2 became a continuous matrix, in which irregular-shaped TiN dispersed. hBN was formed in the TiN–TiB2 composite containing 50–60 vol% TiB2 above 2373 K. The maximum Vickers hardness and fracture toughness obtained for the TiN–80 vol% TiB2 composite sintered at 2473 K was 26.3 GPa and 4.5 MPa m1/2, respectively.  相似文献   

19.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

20.
ZrB2–SiC composites were fabricated by spark plasma sintering (SPS) using TaSi2 as sintering additive. The volume content of SiC was in a range of 10–30% and that of TaSi2 was 10–20% in the initial compositions. The composites could be densified at 1600 °C and the core–shell structure with the core being ZrB2 and the shell containing both Ta and Zr as (Zr,Ta)B2 appeared in the samples. When the sintering temperature was increased up to 1800 °C, only (Zr,Ta)B2 and SiC phases could be detected in the samples and the core–shell structure disappeared. Generally, the composites with core–shell structure and fine-grained microstructure showed the higher electrical conductivity and Vickers hardness. The completely solid soluted composites with coarse-grained microstructure had the higher thermal conductivity and Young's modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号