首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
吴昊泽  丁亮  郑文军  常钧 《粉煤灰》2011,23(2):24-26
通过对钢渣制品进行碳化养护,确定其最佳的碳化制度.实验结果表明:当液态外加剂掺入量为9.00%,初始成型压力f为3.0 MPa时,钢渣制品在CO2分压为fco2=0.25 MPa、fco2=0.55 MPa和fco2=0.75 MPa的压强下各碳化养护1 h后,其碳化增重率迭11.02%,在最佳的碳化制度下,相对于未碳...  相似文献   

2.
钢渣碳化机理研究   总被引:11,自引:1,他引:10  
通过测定钢渣碳化反应中的温度变化,分析钢渣碳化产物的矿物相,以及测试碳化前后钢渣的热重及孔结构变化,研究钢渣碳化的放热性能和结构组成变化。结果表明:钢渣水化24h累计放热量为30J/g,而钢渣试样碳化1h的累计放热总量达95J/g。碳化后的钢渣试样中有碳酸盐矿物生成,每kg钢渣约可固化储存CO2气体121.8g,并且试样的孔隙率由碳化前的21.76%降至13.34%,抗压强度由碳化前的6.69MPa提高至42.14MPa,且碳化后试样压蒸安定性合格。  相似文献   

3.
钢渣的低活性制约了其有效利用,在钢渣粉中分别掺入磷石膏、Na2CO3和Na2SO4作为激发剂,分别制成试块后测试其抗压强度,并利用XRD、综合热分析进行分析,讨论激发剂种类及其掺量对钢渣碳化的影响。研究结果表明:磷石膏的内掺掺量为2.5%时,可提升钢渣碳化率,其钢渣粉碳化固结体试件强度最大,且每公斤钢渣混合料(磷石膏掺量为2.5%)在经过碳化反应后可碳化并储存155 g的CO2。Na2CO3掺入量为1%时,其钢渣粉净浆试块在碳化后强度达到最大值65.7 MPa,其强度提升了58.7%。Na2SO4掺入量为1%时,试件强度为60.3MPa,其强度提升了45.7%。  相似文献   

4.
碳化养护对钢渣混凝土强度和体积稳定性的影响   总被引:1,自引:0,他引:1  
当前国内外对钢渣的利用率不高,急需拓展经济、高效的钢渣利用途径。以钢渣粉为主要胶凝材料组分,用钢渣砂、钢渣石为集料配制混凝土,采用CO_2进行养护,研究碳化养护对钢渣混凝土强度和体积稳定性能的影响。结果表明:经碳化养护后,混凝土抗压强度显著提高,碳化14 d强度提高3.2~5.3倍,最高可达65.3 MPa,且碳化时间越长,试件碳化深度越大、pH值越低、碳化程度越高,混凝土强度也越高。碳化过程中生成碳化产物方解石Ca CO_3(碳酸钙镁Ca_xMg_(1–x)CO_3),使混凝土结构更加致密,吸水率降低。钢渣砂和钢渣石作集料也可被碳化,碳化后钢渣砂、钢渣石混凝土强度高于天然砂、天然石混凝土强度,混凝土体积稳定性得到明显改善。  相似文献   

5.
探讨石灰石粉比表面积、矿物掺合料、早强剂、防水物质及CO2捕收剂对水泥-石灰石粉体系强度和碳化深度的影响。实验发现,硅灰替代20 kg/m3石灰石粉时28 d抗压强度达最高,为40 MPa,比空白高6 MPa,高比表面积(750 m3/kg)石灰石粉次之,为37 MPa,比空白高4 MPa,防水物质和过量硝酸钙会降低混凝土强度;掺入0.3%防水石蜡乳液可使体系碳化深度降至最低,达11 mm,比空白降低13 mm,掺入0.8%硝酸铁次之,碳化深度为13 mm,比空白降低11 mm,矿物掺合料替代石灰石粉不会有效降低碳化深度。因此可适度引入铁离子、防水组分或较高比表面积石灰石粉来提高该体系抗碳化性能。  相似文献   

6.
钢渣–熟石灰碳化砖的特性   总被引:1,自引:0,他引:1  
曹伟达  杨全兵 《硅酸盐学报》2013,(10):1395-1400
研究了钢渣–熟石灰碳化砖的强度、干燥收缩、吸水率和安定性等特性。结果表明:钢渣–熟石灰砖在碳化后,强度可提高3~4倍,干燥收缩和吸水率显著降低,安定性问题得到解决。钢渣–熟石灰碳化砖的最优熟石灰/钢渣比为0.2,其质量指标满足MU20级建筑砖的要求。此外,采用X射线衍射,压汞法和热重差热分析法分析了钢渣–熟石灰碳化砖的碳化作用机理和环保效果。  相似文献   

7.
本课题将钢渣、矿渣以及石灰,在固定的水灰比下搅拌均匀,并在10 MPa的压力下压制成型,放入密闭容器中,通入95%的CO2气体但采用不同的CO2压力进行碳化。实验证明,交替的CO2压力下碳化后的钢渣表面生长着大量簇生的碳酸钙晶体,强度大幅度提高,安定性明显改善。因此,与单一的CO2压力相比,使用交替的CO2压力更有利于碳化。  相似文献   

8.
仲心卓  李路帆  姜义  林忠财 《硅酸盐通报》2021,40(11):3677-3684
为开发钢渣用于高温环境的潜力,最大限度地提高钢渣的综合利用率,通过强度试验、热重分析(TGA)、X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)等测试手段探讨了钢渣加速碳化制品承受不同高温后的抗压强度、矿物相演变和微观结构。结果表明:钢渣加速碳化制品在200~600 ℃范围内的高温处理下,抗压强度得到提高,在400 ℃时达到最大值,为72.4 MPa,较初始强度提高20.5%,钢渣中硅酸钙在高温下进一步发生水化,其水化产物增强了基质连接。当温度达到800 ℃时,钢渣性能发生劣化,强度降低了90.7%,碳酸钙质量分数由24.1%降低至1.6%,而总质量损失可达19.67%,吸水率大幅度提高,且出现贯通试块的裂缝。钢渣加速碳化制品与普通水泥基材料相比,耐高温性能有所提升,但在800 ℃时并无明显优势。  相似文献   

9.
将矿渣压制成2 ×2 ×2 cm3的立方体试块,分别在30 ℃、60℃、90℃、120℃条件下于CO2气氛中碳化.对碳化试块的质量、抗压强度变化进行了测定.采用X射线衍射仪(XRD)、热重-差热分析仪(TG-DSC)分析了碳化过程中的物相变化.用扫描电子显微镜(SEM)观察了碳化后产物的微观形貌.结果表明,矿渣试块的抗压强度及质量变化均随碳化温度的增加而增加,且随碳化龄期的延长而增加.矿渣在90℃条件下碳化6h的抗压强度达41.2 MPa,质量增加9.9%,在此条件下1 kg矿渣可固化储存99 g的CO2.矿渣的碳化产物主要为CaCO3,未生成C-S-H凝胶和Ca(OH)2.结果表明了矿渣在固碳的同时亦能硬化形成良好力学强度的块体材料,这是“以废治废”的良好途径.  相似文献   

10.
碳化时间及CO2浓度,显著影响氢氧化钙的碳化特性。本试验中,保持CO2压力为0.2 MPa、用水量为10%,控制CO2浓度变化范围为10%~99%,碳化时间为5 min~24 h。试验结果显示,在同一CO2浓度下,随碳化时间延长,氢氧化钙碳化速率逐渐提高,试块强度也不断增加;而随着气体浓度的不断增加,氢氧化钙的碳化速度也不断增加。研究发现,在试块达到相同碳化程度时,试块在低浓度CO2气体下的碳化强度要高于高浓度气体条件下的碳化强度。对碳化样品的XRD分析表明,碳化产物中仅含有方解石型碳酸钙。  相似文献   

11.
《应用化工》2022,(2):332-335
以NH_4Cl溶液浸取电石渣得到的Ca(2+)溶液为钙源,以Na_2CO_3为碳化剂,制备超细CaCO_3。研究了Ca(2+)溶液为钙源,以Na_2CO_3为碳化剂,制备超细CaCO_3。研究了Ca(2+)浓度、碳化剂的滴加速度、反应温度、反应时间、pH、[CO32-]/[Ca(2+)浓度、碳化剂的滴加速度、反应温度、反应时间、pH、[CO32-]/[Ca(2+)]摩尔比对CaCO_3产率的影响。结果表明,在Ca(2+)]摩尔比对CaCO_3产率的影响。结果表明,在Ca(2+)浓度0.3 mol/L,Na_2CO_3滴速30 mL/min,温度40℃,反应时间30 min,Ca(2+)浓度0.3 mol/L,Na_2CO_3滴速30 mL/min,温度40℃,反应时间30 min,Ca(2+)溶液的pH为9,[CO32-]/[Ca(2+)溶液的pH为9,[CO32-]/[Ca(2+)]摩尔比1.1的条件下,CaCO_3产率92.07%,纯度97.35%。经X射线衍射和扫描电镜分析,合成的CaCO_3以方解石型为主,并含有部分球霰石型。方解石型含量为62.85%,颗粒为表面光滑致密的立方体结构,粒径为4~9μm,平均晶粒尺寸60 nm;球霰石型含量为37.15%,颗粒为表面不圆滑的球形结构,粒径3~8μm,平均晶粒尺寸28 nm。  相似文献   

12.
为开发γ-C2S不锈钢渣碳储存的潜力,最大限度地提高不锈钢渣的综合利用率。通过研究主要碳化参数(如液固比、成型压力、CO2分压)对不锈钢渣碳化性能的影响规律来评估不锈钢渣的CO2储存能力,以期能够提供更佳的不锈钢渣碳化过程。利用XRD、SEM/EDS、DSC/TG分析对不锈钢渣碳化产物组成及微观形貌进行表征,并探索其碳化机理。结果表明,较佳碳化参数为成型压力为2.50 MPa,液固比为10%,CO2分压为0.3 MPa。较佳碳化条件下每千克不锈钢渣可固化储存CO2气体约123.6 g。不锈钢渣碳化过程以γ-C2S碳化反应为主,碳化产物中出现了片状、颗粒状的CaCO3,随碳化时间延长,晶体逐渐长大为团簇状。因此,利用不锈钢渣储备碳及制备碳化制品是可行的。  相似文献   

13.
将400、450、500m^2/kg三个细度的钢渣微粉与细度为450m^2/kg的矿渣复合成为双掺料,配制成复合水泥。试验表明:该水泥的标准稠度需水量随钢渣掺量增加呈减小的趋势,终凝时间则逐渐延长。当钢渣掺量不变时,提高钢渣微粉的细度,水泥的标稠需水量变化不大。随钢渣掺量增加,水泥各个龄期的抗压和抗折强度呈下降趋势。在相同的掺量条件下,钢渣粉细度为400m^2/kg比表面积、掺量为10%时,28d抗压强度明显降低。提高钢渣粉细度,28d抗压和抗折强度总体上呈增加的趋势。将450m^2/kg比表面积的钢渣微粉与矿渣微粉复合为双掺料,是经济可行的技术方案。  相似文献   

14.
<正> 我厂为1.5×10~4tNH_3/a 的小氮肥厂。碳化氨水泵型号为2BF—6,铭牌数据为:Q=20m~3/h,H=30m,N=4kW。碳化氨水泵的入口压力一般均为正压,即 p_1>0。氨水泵工作时,氨水由 P_1升高到P_2(单台为 p_2=0.3~0.4MPa;串联两台  相似文献   

15.
用碳化养护电弧熔炉钢渣制备集料和混凝土   总被引:4,自引:1,他引:3  
将电弧熔炉(electric arc furnace,EAF)钢渣和石灰混和制成球状集料,置于密闭容器当中,并通入100%的CO2气体进行碳化,在0.506 6MPa保持2h.通过质量法测定添加质量分数为11.94%石灰的EAF钢渣(下同)集料CO2的吸收率为5%,通过红外光谱(infrared,IR)分析测定CO2的吸收率为13.88%.用碳化的钢渣集料制备混凝土再进行碳化养护,同时利用碎石和河砂为集料制备碳化混凝土作为参比样.用质量法测定2种混凝土的碳化率分别为21.14%和10.57%;用IR法的为13.81%和16.97%.碳化后电弧熔炉钢渣集料内生长着大量簇生的犬牙状碳酸钙晶体.  相似文献   

16.
钢渣存在安定性不良的问题,将钢渣应用于水稳层,会存在钢渣分布不均匀,使试样出现膨胀开裂的现象。通过研究发现,对钢渣基胶凝材料进行碳化处理可以提高其体积稳定性,粒径较细的钢渣能够增大碳化反应面积,有利于提高碳化程度。本文对≥200目钢渣进行碳化处理,研究碳化时间和碳化温度对预碳化钢渣基胶凝材料的体积稳定性影响,并对其碳化机理进行探究;与建筑再生骨料制备水稳层,对其进行无侧限抗压强度和抗冻性测试。结果表明,随着碳化时间的和温度增加,预碳化钢渣基胶凝材料压蒸膨胀率逐渐降低,活性先增高后降低。在常压下,碳化温度为60 ℃,碳化时间为1.5 h的钢渣基胶凝材料相对活性最高。  相似文献   

17.
预处理是碳化养护制度中的关键步骤,对水泥浆体碳化非常关键。在本文中,通过紫外线照射的方式对拟碳化养护的水泥试件进行预处理,并与标养预处理对比,测试并分析了硅酸盐水泥浆体的碳化深度、抗压强度、CO2吸收量及水化产物结构形态变化。结果表明,在相同时间内,水泥试件经过紫外预处理后的质量损失是标养预处理的5.3倍,而在加速碳化后其碳化深度较标养预处理提高了2.4倍,碳化反应后其质量增加4.5倍,早期强度提高了18.9%,CO2吸收量提高了0.25%。紫外预处理增加了碳化水泥试件高聚合度硅胶(Q3+Q4)的含量。因此,紫外预处理可明显加快试件失水和脱钙进程,对水泥试件碳化过程具有显著的增强作用。  相似文献   

18.
王新杰  吴永康  朱平华 《硅酸盐通报》2020,39(10):3273-3279
以再生粗骨料粘附砂浆含量为变量,配制C40再生骨料混凝土进行碳化对比试验,结合碳化模型以碳化深度达到钢筋表面为准则,探究粘附砂浆含量对再生骨料混凝土抗碳化性能的影响.结果 表明,碳化深度与碳化速率均随粘附砂浆含量的增加而增大,且碳化深度增幅较大,粘附砂浆含量处于35% ~45%(质量分数)时,其碳化深度可以满足一般环境下混凝土结构设计使用年限30 a、50 a和100 a的抗碳化性能要求.  相似文献   

19.
针对海口磷矿擦洗尾矿中硅酸盐矿物含量高,采用正浮选实验考察磨矿细度、Na_2CO_3用量、YP1用量、L10用量、YP2-1用量对精矿产率、品位、P_2O_5回收率的影响。结果表明,在粒径0.074 mm的颗粒占比92%、Na_2CO_3用量3.0 kg/t、YP1用量2.0 kg/t、L10用量150 g/t、YP2-1用量2.2 kg/t条件下,获得的技术指标为:精矿产率54.22%,w(P_2O_5)26.09%,w(SiO_2)23.84%,P_2O_5回收率84.96%;尾矿w(P_2O_5)5.47%。  相似文献   

20.
研究了钢渣的粉磨特性及其比表面积对低碳建筑材料性能的影响。试验结果表明,随着粉磨时间的延长,钢渣的比表面积逐渐增大,但其粉磨效率逐渐降低;随着钢渣比表面积的提高,砂浆的流动度和碳化养护时间逐渐增大,LBM试样的抗折强度和抗压强度也明显增加,且比对比试样的强度增加30倍以上;综合考虑能耗和强度指标,应选用比表面积约350 m~2/kg的钢渣作为制备低碳建筑材料的主要胶结材,其抗折强度和抗压强度可分别超过6 MPa和25 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号