首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Ceramics International》2016,42(6):7246-7252
Aluminum-doped zinc oxide (AZO) layers were deposited on polyethylene terephthalate (PET) flexible substrates and optimized by laser annealing using a 532 nm nanosecond pulsed laser. Effects of overlap rates, i.e. laser spot overlap rate (SOR) and laser scan line overlap rate (LOR), on AZO/PET films were investigated by X-ray diffractometer (XRD), scanning electron microscope (SEM), UV–visible transmittance spectra and digital four-point probe instrument, respectively. Laser annealing could greatly enhance grain crystallinity, increase crystallite size and avoid damage to the PET flexible substrates, thus effectively enhance transmittance and conductivity of the films. The results showed that the AZO/PET film annealed by using 85% SOR and 60% LOR presented the highest average visible transmittance of 76.2% and the lowest resistivity of 1.95×10−3 Ω cm, which respectively improved by approximately 23% and 75% compared to those of the as-deposited AZO/PET film. This work may be of great importance from the viewpoint of performance optimization of transparent conductive oxide (TCO) flexible films.  相似文献   

2.
《Ceramics International》2017,43(4):3900-3904
Thin films comprising 0.5 mol% aluminum-doped zinc oxide (AZO) were prepared on glass substrates by a spin-coating method for transparent conducting oxide (TCO) applications. UV laser was selected for the annealing of AZO thin films, due to the well matched energy bandgap between UV laser and AZO films. After the rapid thermal annealing (RTA) process, post UV laser annealing was carried out by varying the scan speed of the laser beam, and the effects of laser annealing on the structural, morphological, electrical, and optical properties were analyzed. The results indicated that UV laser annealing based on various scan speeds affects the microstructure, sheet resistance, and optical transmittance of the AZO thin films, compared with those of the only RTA processed thin films. X-ray diffraction (XRD) analysis showed that all films that preferentially grew normally on the substrate had a (002) peak. The optical transmittance spectra of the laser/RTA annealed AZO thin films exhibited greater than 83% transmittance in the visible region. Also, the sheet resistance (1.61 kΩ/sq) indicated that optimized UV laser annealing after the RTA process improves film conductance.  相似文献   

3.
《Ceramics International》2017,43(9):7329-7337
Commercial fluorine-doped tin oxide (FTO) thin films were subjected to laser annealing coupled with ultrasonic vibration (48 kHz and 350 W). The effects of ultrasonic vibration, laser fluence and defocusing amount were systematically studied. Laser annealing could result in grain growth or damage of the FTO layer, and introducing ultrasonic vibration during laser annealing could effectively enhance the film compactness, decrease the film thickness and refine the grains in the film. As a result, the optical and electrical properties of the ultrasonic-vibration-assisted laser-annealed FTO films were significantly improved by using low laser fluences and high defocusing amounts, and were slightly deteriorated when high laser fluences and low defocusing amounts were adopted. The results indicated that the film obtained by ultrasonic-vibration-assisted laser annealing using a laser fluence of 0.6 J/cm2 and a defocusing amount of 2.0 mm had the best overall photoelectric property with an average transmittance of 84.1%, a sheet resistance of 8.9 Ω/sq and a figure of merit of 1.99×10–2 Ω–1, outperforming that of the film obtained by pure laser annealing using the same experimental parameters. The present study confirms the efficacy of ultrasonic-vibration-assisted laser annealing in optimizing performance of FTO films.  相似文献   

4.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   

5.
Transparent ZnO and Al-doped ZnO (AZO) thin films have been prepared by radio frequency sputtering deposition at room temperature. The optical, electrical, and structural characteristics of the obtained films have been extensively investigated as a function of sputtering and annealing parameters. Spectrophotometry, X-ray diffraction (XRD), atomic force microscopy (AFM), four-point probe and Hall-effect measurements were employed. The ZnO films generally exhibited excellent crystalline properties, while providing a UV cut-off in the absorption spectrum for optical filtration. AZO thin films exhibited an average transparency (larger than 85%) over the visible region of the spectrum, and resistivity of the order of 10?3 Ω cm was obtained. The carrier concentration and electron mobility values proved to be dependent on the deposition parameters and annealing temperature. The obtained results showed that annealing temperatures higher than 400 °C were not necessary and potentially degraded the electronic properties of the AZO thin films.  相似文献   

6.
New transparent and high infrared reflection films having the sandwich structure of SiO2/Al:ZnO(AZO)/SiO2 were deposited on the soda-lime silicate glass at room temperature by radio frequency (R.F.) magnetron sputtering. The optical and electrical properties of SiO2 (110 nm)/AZO (860 nm)/SiO2 (110 nm) sandwich films were compared with those of single layer AZO (860 nm) films and double layer SiO2 (110 nm)/AZO (860 nm) films. The results show that these sandwich films exhibit high transmittance of over 85% in the visible light range (380–760 nm), and low reflection rate of below 4.5% in the wavelength range of 350–525 nm, which is not shown in the conventional single layer AZO (860 nm) films and double layer SiO2 (110 nm)/AZO (860 nm) films. Further these sandwich films display a low sheet resistance of 20 Ω/sq by sheet resistance formula and high infrared reflection rate of above 80% in the wavelength range of 15–25 μm. In addition, the infrared reflection property of these sandwich films is determined mainly by the AZO film. The outer SiO2 film can diminish the interference coloring and increase transparency; the inner SiO2 film improves the adhesion of the coating to the glass substrate and prevents Ca2+ and Na+ in the glass substrate from entering the AZO film.  相似文献   

7.
《Ceramics International》2016,42(5):5754-5761
AZO/Cu/AZO multilayer thin films produced under different annealing conditions are studied in this paper, to examine the effects of atmosphere and annealing temperature on their optical and electrical properties. The multilayer thin films are prepared by simultaneous RF magnetron sputtering (for AZO) and DC magnetron sputtering (for Cu). The thin films were annealed in a vacuum or an atmosphere of oxygen at temperatures ranging from 100 to 400 °C in steps of 100 °C for 3 min. High-quality multilayer films (at Cu layer thickness of 15 nm) with resistivity of 1.99×10−5 Ω-cm and maximum optical transmittance of 76.23% were obtained at 400 °C annealing temperature in a vacuum. These results show the films to be good candidates for use as high quality electrodes in various displays applications.  相似文献   

8.
《Ceramics International》2022,48(7):9817-9823
Electrical and optical properties of In-Ga-Sn-O (IGTO) thin films deposited by radio-frequency magnetron sputtering were investigated according to annealing temperatures. While IGTO films remained an amorphous phase even after a heat treatment at temperature up to 500 °C, Hall measurements showed that annealing temperature had a significant impact on electrical properties of IGTO thin films. After investigating a wide range of annealing temperatures for samples from as-deposited state to 500 °C, IGTO film annealed at 200 °C exhibited the best electrical performance with a conductivity of 229.31 Ω?1cm?1, a Hall mobility of 36.89 cm2V?1s?1, and a carrier concentration of 3.85 × 1019 cm?3. Changes in proportions of oxygen-related defects and percentages of Sn2+ and Sn4+ ions within IGTO films according to annealing temperatures were analyzed with X-ray photoelectron spectroscopy to determine the cause of the superb performance of IGTO at a low temperature. In IGTO films annealed at 200 °C, Sn4+ ions acting as donor defects accounted for a high percentage, whereas hydroxyl groups working as electron traps showed a significantly reduced percentage compared to the as-deposited film. Optical band gaps of IGTO films obtained from UV–visible spectrum were 3.38–3.47 eV. The largest band gap value of 3.47 eV for the IGTO film annealed at 200 °C could be attributed to an increase in Fermi-level due to an increase of carrier concentration in the conduction band. These spectroscopic results well matched with electrical properties of IGTO films according to annealing temperatures. Excellent electrical properties of IGTO thin films annealed at 200 °C could be largely due to Sn donors besides oxygen vacancies, resulting in a significant increase in free carriers despite a low annealing. temperature.  相似文献   

9.
Transparent conductive films of Al-doped zinc oxide (AZO) were deposited on glass substrates under various ZnO buffer layer deposition conditions (radio frequency (r.f.) power, sputtering pressure, thickness, and annealing) using r.f. magnetron sputtering at room temperature. This work investigates the influence of ZnO buffer layer on structural, electrical, and optical properties of AZO films. The use of grey-based Taguchi method to determine the ZnO buffer layer deposition processing parameters by considering multiple performance characteristics has been reported. Findings show that the ZnO buffer layer improves the optoelectronic performances of AZO films. The AZO films deposited on the 150-nm thick ZnO buffer layer exhibit a very smooth surface with excellent optical properties. Highly c-axis-orientated AZO/ZnO/glass films were grown. Under the optimized ZnO buffer layer deposition conditions, the AZO films show lowest electrical resistivity of 6.75 × 10−4 Ω cm, about 85% optical transmittance in the visible region, and the best surface roughness of Ra = 0.933 nm.  相似文献   

10.
《Ceramics International》2017,43(10):7543-7551
The deposition rate, transmittance and resistivity of aluminium-doped zinc oxide (AZO) films deposited via radio frequency (r.f.) sputtering change with target thickness. An effective method to control and maintain AZO film properties was developed. The strategy only involved the regulation of target bias voltage of r.f. magnetron sputtering system. The target bias voltage considerably influenced AZO film resistivity. The resistivity of the as-deposited AZO film was 9.82×10−4 Ω cm with power density of 2.19 W/cm2 at target self-bias of −72 V. However, it decreased to 5.98×10−4 Ω cm when the target bias voltage was increased to −112 V by applying d.c. voltage. Both growth rate and optical band gap of AZO film increased with the absolute value of target bias voltage – growth rate increased from 10.54 nm/min to 25.14 nm/min, and band gap increased from 3.57eV to 3.71 eV when target bias voltage increased from −72 V to −112 V at r.f. power density of 2.19 W/cm2. The morphology of AZO films was slightly affected by the target bias voltage. Regulating target bias voltage is an effective method to obtain high-quality AZO thin films deposited via r.f. magnetron sputtering. It is also a good choice to maintain the quality of AZO film in uptime manufacturing deposition.  相似文献   

11.
《Ceramics International》2017,43(5):4536-4544
Al-doped zinc oxide (AZO) thin films were deposited onto flexible ultra-thin glass substrates by using a direct current (DC) magnetron sputtering process. The effects of sputtering power, working pressure and substrate temperature on the morphology and optoelectronic performances of AZO films were investigated. The optimal sputtering power, working pressure and substrate temperature for AZO film were determined to be 100 W, 0.9 Pa and 150 ℃, respectively. Further increasing or decreasing the sputtering power, working pressure and substrate temperature degrades the quality of AZO films. XRD patterns show all as-sputtered AZO thin films are preferred to grow along <0002> direction. Moreover, the largest grain size, which depicts the best microstructure of AZO films, matches with the smallest stress value. It can be seen from SEM images that the surface is smooth and dense. The smallest value of the resistivity is 1.784×10−3 Ω cm and the average transmittance of all AZO films in the visible range is about 80%. The X-ray photoelectron spectroscopy spectra show that the amount of Al element in the AZO film is very small.  相似文献   

12.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

13.
8 mol% yttria‐stabilized zirconia (8YSZ) is an extensively studied solid electrolyte. But there is no consistency in the reported ionic conductivity values of 8YSZ thin films. Interfacial segregation in YSZ thin films can affect its ionic conductivity by locally altering the surface chemistry. This article presents the effects of annealing temperature and film thickness on free surface yttria segregation behavior in 8YSZ thin film by Angle Resolved XPS and its influence on the ionic conductivity of sputtered 8YSZ thin films. Surface yttria concentration of about 32, 20, and 9 mol% have been found in 40 nm 8YSZ films annealed at 1273, 1173, and 1073 K, respectively. Yttria segregation is found to increase with increase in annealing temperature and film thickness. Ionic conductivities of 0.23, 0.16, and 0.08 Scm?1 are observed at 923 K for 40 nm 8YSZ films annealed at 1073, 1173, and 1273 K, respectively. The decrease in conductivity with increase in annealing temperature is attributed to the increased yttria segregation with annealing. Neither segregation nor film thickness is found to affect the activation energy of oxygen ion conduction. Target purity is found to play a key role in determining free surface yttria segregation in 8YSZ thin films.  相似文献   

14.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by MF magnetron sputtering from a ceramic oxide target without heating the substrates. This study has investigated effects of sputtering power on the structural, electrical and optical properties of the AZO films. The films delivered a hexagonal wurtzite structure with (002) preferential orientation and uniform surface morphology with 27–33 nm grain size. The results indicate that residual stress and grain size of the AZO films are dependent on sputtering power. The minimum resistivity of 7.56×10?4 Ω cm combined with high transmittance of 83% were obtained at deposited power of 1600 W. The films delivered the advantages of a high deposition rate at low substrate temperature and should be suitable for the fabrication of low-cost transparent conductive oxide layer.  相似文献   

15.
《Ceramics International》2017,43(8):6008-6012
The variation of the chemical composition and properties of PZT films as a function of oxygen pressure and laser fluence during pulsed laser deposition is used to tune the electrical properties of the PZT thin films. It is found that the deposition using a 248 nm laser fluence of 1.7 J/cm2 and an oxygen pressure of 400 mtorr results the PZT films very similar to that of target material. Changing the laser fluences or oxygen pressure, affects the lead content of the deposited film. In the range of oxygen pressure 50–200 mtorr, the Zr/Zr+Ti and Ti/Zr+Ti ratio varies with oxygen pressure while the Pb/Zr+Ti ratio is almost uniform. Using oxygen pressure as a control parameter to tune the chemical compound and electrical properties of the deposited PZT films, the remnant polarization of the PZT films is tuned in the range of 6.6–42.2 µC/cm2, the dielectric constant is controlled in the range of 29–130, and the piezoelectric constant d33 is controlled in the range of 3.82–4.96 pm/V for a 40 nm thick PZT film.  相似文献   

16.
《Ceramics International》2020,46(14):21925-21931
In this work, a wide and highly sensitive chemiresistive sensor has been developed based on the AZO nanocolumn array film. This is meant for the room detection of H2O2 under UV illumination. A cost-effective one step multi-layers growth process was adopted for the synthesis of the AZO nanocolumn array. The experimental studies were done by scanning electron microscopy (SEM), transmission and electron microscopy (TEM).Then X-ray diffraction confirmed that the AZO column array was closely packed, connected, vertically aligned, and polycrystalline, with a high surface area. This structure ensures better electrical conduction over random and separated nanostructures. The hall-effect measurement indicates that the AZO film was n-type, with high conductivity (3.60 × 103 Ωcm), high carrier density (11.3 × 1020cm−3) and with acceptable mobility (0.95 cm2/Vs). The x-ray photoemission spectroscopy suggests that the AZO film consists of a large amount of adsorbed oxygen-related species at the sheath layer of the thin-film, which is vital for sensors. By the UV light activation, sensors based on the AZO nanocolumn array exhibited enhanced H2O2 detection properties at room temperature. At a concentration from 15 μM to 30 mM, H2O2 sensitivity evaluated by relative response was remarkably increased from 15% to 36%. The operation under ambient conditions and wide range sensing shows that this chemiresistive AZO sensor is adequate for biomedical and environmental applications.  相似文献   

17.
Graded structures of aluminum-doped zinc oxide (AZO) multilayered thin film were prepared on quartz glass substrate by sol-gel process, and then sequentially annealed by raped thermal annealing(RTA) and UV laser annealing technologies for transparent conducting oxide (TCO) applications. Different Al mol% (0, 0.17, 0.33,0.5, 0.66, 0.83, 1) doped ZnO graded structures of multilayer thin films were prepared to optimize the lattice parameter to reduce stress, and then the annealing processes were sequentially performed. Introducing graded multilayered thin films, reduced the stress between the layers. The AZO graded structures of multilayer thin films were annealed by RTA followed by a 350 nm nanosecond pulsed UV laser annealing method. The graded structures of multilayered AZO thin films were investigated and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), four-point probe, and UV–vis spectrophotometer, respectively. These results show that multilayered graded thin films were well grown with decreased stress, and well crystallized along the c-axis. The optical transmittance of the films is around 94.8% at 400–800 nm wavelength, and the energy band-gap is around 3.27 eV, respectively. The sheet resistance value of 13.2 kΩ/sq shows a 30% improvement.  相似文献   

18.
Wei Lin  Jintang Shang  Wentian Gu  C.P. Wong 《Carbon》2012,50(4):1591-1603
The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films synthesized by thermal chemical vapor deposition was measured by a laser flash technique, and shown to be ~30 mm2 s?1 along the tube-alignment direction. The calculated thermal conductivities of the VACNT films and the individual CNTs were ~27 and ~540 W m?1 K?1, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube–tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube–tube interaction in dense VACNT films decreased the effective thermal conductivity of the individual CNTs in the films. The tip-to-tip contact resistance was shown to be ~1 × 10?7 m2 K W?1. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging.  相似文献   

19.
《Ceramics International》2022,48(17):24898-24905
MXene films promise potential electromagnetic interference (EMI) shielding materials, but poor scalable processability, environmental instability, and weak mechanical properties severely restrict their applications. Herein, we engineer the large-area, high-performance, and compact nacre-like MXene-based composite films through cooperative co-assembly of Ti3C2TX MXene and reduced graphene oxide (rGO) in the presence of polyvinyl alcohol (PVA). The resulting MXene-rGO-PVA composite films benefit from enhanced bonding strength and extra chain bridging effect of linear PVA molecules enriched with hydroxyl groups. Therefore, the composite film achieves high tensile strength (~238 MPa) and toughness (~1.72 MJ m?3) while having high conductivity of ~32 S cm?1. A significant EMI shielding effectiveness (41.35 dB) is also demonstrated, with an excellent absolute shielding effectiveness of ~20,200 dB cm2 g?1 at only 12-μm thickness. Moreover, due to the synergistic effect of multiple components, the composite films maintain a stable EMI shielding performance in harsh environments (sonication, hot/cold annealing, and acid solution) with mechanical properties that fluctuate only within 10% compared to the original film. More importantly, commercial polyethylene terephthalate release liner can be applied for the film coating, facilitating continuous roll-to-roll production of large-area films and future applications.  相似文献   

20.
Orthorhombic Sc2Mo3O12 films have been successfully prepared via spin coating technique followed by annealing at 500–750 °C. The phase composition, microstructure, morphology and negative thermal behavior of the synthesized Sc2Mo3O12 films were investigated. XRD and XPS analysis indicate that as-deposited film is amorphous. Orthorhombic Sc2Mo3O12 films can be prepared after post-annealing at 500–750 °C for 1 h. The crystallinity of Sc2Mo3O12 films gradually improved with the increase of post-annealing temperature. SEM analysis shows as-deposited film is smooth and compact, and the grain size of Sc2Mo3O12 film grows up as the post-annealing temperature increases. Variable temperature XRD analysis demonstrates that the synthesized orthorhombic Sc2Mo3O12 films show stable thermo-chemical and anisotropic NTE property in 25–700 °C. The corresponding coefficients of thermal expansion (CTEs) of the orthorhombic Sc2Mo3O12 film in a, b and c directions are ?6.68 × 10?6 °C?1, 5.08 × 10?6 °C?1 and ?4.76 × 10?6 °C?1, respectively. The whole unit cell of the orthorhombic Sc2Mo3O12 film shrinks and the volumetric CTE of the Sc2Mo3O12 thin film is ?6.36 × 10?6 °C?1, and the linear CTE is about ?2.12 × 10?6 °C?1 (αv = 3αl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号