首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《Ceramics International》2023,49(16):27030-27039
Designing glass with excellent acid resistance is a prerequisite for developing high-performance terminal electrode pastes. Herein, we fabricated Y2O3 doped BaO–B2O3–SiO2 glass with excellent anti-sulfuric acid corrosion properties. The anti-corrosion mechanism of glass in acid environment was investigated by spectra and microstructure analysis. The passivating gel layer with a porous structure was formed on the glass surface during the corrosion process. The average pore diameter of the porous gel could be reduced by increasing the content of Y2O3. The smaller pore size of the porous gel would considerably increase the collision frequency between solvent molecules and the pore wall, which could effectively inhibit the ion migration in the gel layer, reduce the corrosion rate, and improve the acid resistance of the glass. This study contributes to the understanding of the corrosion mechanism of the glass and provides theoretical guidance for rationally designing anti-acid corrosion glass for terminal electrode pastes.  相似文献   

2.
《Ceramics International》2022,48(6):8012-8024
When applying an additional coating method to fabricate micro-nano hierarchical structure required for superhydrophobic function on glass surface, the hierarchical structure does generally not have good abrasion resistance, due to the weak adhesion between coating and glass surface. However, glass itself is a material with good abrasion resistance. A micro-nano hierarchical structure with honeycomb-shaped micro-armor protection on glass surface by a two-step hydrothermal corrosion method has been constructed: the first step of hydrothermal corrosion in water to construct micro-armor structure, and the second step of hydrothermal corrosion in sodium citrate aqueous solution to fabricate micro-nano hierarchical structure. The advantages of this new method are: the treatment process is simple, and there is no need to apply additional coatings. The micro-nano hierarchical structure constructed on glass surface by this method has a great abrasion resistance. After 1,000 cycles of abrasion under harsh conditions, the nano-structure on glass surface can still be remained intact. It provides a new method for fabricating abrasion-resistant micro-nano hierarchical structure on glass surface, as well as a new approach to the preparation of abrasion-resistant superhydrophobic glass.  相似文献   

3.
Being a nonequilibrium material, the structure of glass varies with the sample history. Thus, the initial surface condition of a glass can vary with the preparation condition and have a large impact on its reactivity. This paper shows that the aqueous corrosion behavior of international simple glass (ISG) varies depending on the initial surface state. The ISG glass samples were prepared as-polished-only and polished-then-annealed and they were immersed in aqueous solution saturated with soluble SiO2 at 30°C (modeling a mild condition) and at 90°C (modeling a severe condition). Molecular dynamics simulations were performed to obtain coordination numbers of network formers of ISG to assist oxygen speciation calculations. The surface structures of as-prepared and corroded ISG samples were analyzed using various imaging and spectroscopic techniques. Among these analyses, only the oxygen speciation with x-ray photoelectron spectroscopy showed discernable differences between two uncorroded surfaces with different preparation histories; all other methods could not differentiate the surface preparation history before aqueous corrosion. Such minor difference in chemical structures was found to have a profound impact on corrosion behaviors in the mild condition. In the harsh condition, the surface history dependence was not as drastic as the corrosion in the mild condition. The analysis results of the corroded surfaces suggested that the thickness and structure of the alteration layer formed on ISG in aqueous corrosion can vary with the initial surface state.  相似文献   

4.
The hydrothermal corrosion behavior of SiC layer in tristructural-isotropic (TRISO) fuel particles and its effect on the fracture strength were investigated. The corrosion test was performed using the static autoclave at 400°C/10.3 MPa. The SiC layer exhibited a thickness loss and the corrosion rate followed a linear law. During corrosion, carbon was formed on the SiC surface due to the loss of Si. The corrosion was found preferentially occurred at the grain boundary of SiC, leading to the grain detachment and pit formation. The rate determining step of the corrosion was SiO2 formation rather than SiO2 dissolution in the hydrothermal environment. The fracture strength of SiC shell after corrosion was evaluated using the crush test. It showed a slight decrease with an increase in corrosion time, due to the thickness reduction in SiC layer. The results of this study demonstrated that the SiC in TRISO particles has good corrosion resistance in the hydrothermal environment.  相似文献   

5.
The aim of this study is to develop a newly silane sol–gel pretreatment on the barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. The sol–gel coatings are used as coupling agent between aluminium substrate and cataphoretic paint. The pretreatment is an aqueous solution of three different silane compounds (glycidyloxypropyltrimethoxysilane (GPS), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES)) hydrolysed at two different pH (2 and 3.5). A system without pretreatment was studied as reference. The electrocoatings were cured between 155 °C and 195 °C in order to modify their mechanical properties.Polarisation curves, EIS and FT-IR measurements were used in order to characterize the silane layers. EIS measurements were used to follow the barrier properties and the water uptake evolution on intact coatings.The filiform corrosion protection of the coating was also evaluated by a normalized filiform corrosion test.  相似文献   

6.
Nanostructured coatings approach for corrosion protection   总被引:8,自引:0,他引:8  
Nanostructured surface treatment coatings based on the Self-assembled Nanophase Particle (SNAP) approach were investigated as potential replacement for chromate-based surface treatments on aircraft aluminum alloys. In the traditional sol–gel method, hydrolysis-condensation processes are followed by condensation polymerization upon film application. This process sequence provides a low temperature route to the preparation if thin coatings which are readily applied to most metallic substrates. The recent discovery of a method of forming functionalized silica nanoparticles in situ in an aqueous sol–gel process, and then cross-linking the nanoparticles to form a thin film, is an excellent example of a nanoscience approach to coatings. This Self-assembled Nanophase Particle (SNAP) process can be used to form thin, dense protective organic surface treatment coatings on Al aerospace alloys. The ability to design coating components from the molecular level upward offers tremendous potential for creating multifunctional coatings.

The important components of Al alloy corrosion inhibition by chromate are storage and release of CrVI species, inhibition of cathodic reactions (primarily oxygen reduction), and inhibition of attack at active sites in the alloy. Unlike chromate-based treatments, current SNAP coatings provide barrier-type corrosion resistance but do not have the ability to leach corrosion inhibitors upon coating damage and minimize corrosion of the unprotected area. In this study, organic inhibitors were tested for corrosion protection of aluminum alloys in combination with the (SNAP). Scanning Vibrating Electrode Technique, anodic polarization, electrochemical impedance spectroscopy, and salt spray test were used to study this new approach for chromate replacement.  相似文献   


7.
The compatibility between a cataphoretic electro-coating and a silane layer applied on galvanized steel was evaluated by performing electrochemical impedance measurements on coated and uncoated samples. During electro-deposition, the water electrolysis induces hydrogen production. This process can induce degradation or destruction of the silane layer. This process was simulated by reproducing the application conditions of electro-coating in an aqueous solution of same pH (6) and conductivity (1600 μS) than the electro-coating bath, but without any pigments and binder. A current of 2 mA/cm2 was applied between the sample and the counter-electrode during 10 and 20 s. These conditions are representative of the mean real application conditions just before the coating formation. The loss of the barrier effect offered by the silane layer was evaluated by EIS before and after simulation. This simulation shows whether it is possible to conveniently design the properties of the silane layer to maintain its protection and adhesion promotion properties after polarization. The barrier properties and the water uptake of the electro-coated samples were evaluated by EIS as a function of immersion time in a sodium chloride solution (0.1 M). The coated silane pre-treated samples show a good behaviour compared to the samples coated without pre-treatment. By properly managing the deposition conditions of sol–gel films it is possible to obtain cataphoretic coating with improved corrosion resistance. Silane sol–gel films of different thicknesses and curing temperature were produced. It was demonstrated that a 120 nm thick silane sol gel film cured at 180 °C ensures a very good compatibility with the electro-coat. In fact, this system shows a very high corrosion resistance even after 50 days of immersion in a sodium chloride solution. Also the resistance in the salt spray chamber of the electro-coated thin silane layer cured at 180 °C is remarkable. The results confirm that, if conveniently designed, silane sol–gel film properties, the silane layer is a good adhesion promoter of the cataphoretic coating on galvanized steel and this property is maintained for long exposure times.  相似文献   

8.
Novel anti-corrosion zirconia coating was prepared via the sol–gel method for AZ91D magnesium alloy using zirconium nitrate hydrate as a precursor modified with acetylacetone (AcAc). Magnesium alloy substrates were first fluorinated in 20% HF aqueous solution at room temperature for 20 h, then, the zirconia coating was deposited on the fluorinated sample by dip coating. Basing on the sol–gel process, a chelate complex from the reaction of zirconium coordinating AcAc was formed which was supported by UV–vis spectrum analysis. The result showed that the absorption peak could be seen for the sol at 308 nm, which was red-shifted by 36 nm from that of methanol form of AcAc (272 nm). Moreover, Fourier transform infrared (FT-IR) spectrum analysis was performed to examine the structural differences between the gel and AcAc. The results indicated that the chelate complex with a bidentante structure was formed through the interaction chemically between zirconium nitrate and AcAc. The surface morphology of the zirconia coating was characterized by scanning electron microscope (SEM), an uniform coating can be obtained on the fluorinated sample. The corrosion resistance of the substrate, the fluorinated with and without the zirconia coating in the 3.5 wt.% NaCl solution was studied using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests, respectively. The results demonstrated that the zirconia coating could greatly improve the corrosion resistance of the AZ91D magnesium alloy. Furthermore, the effect of the different heat-treatment temperatures for the zirconia coating on corrosion resistance was also discussed.  相似文献   

9.
Conclusions When laboratory investigations are being carried out to find resistant refractories for glass tank furnaces it is desirable to make simultaneous use of indirect and direct methods of assessing corrosion resistance.The use of indirect methods for determining corrosion resistance in refractories permits us to explain the nature of the interaction between the refractory and glass, to study the nature and properties of the reaction products, and also to select refractories that form with the glass the most infusible or viscous reaction products for subsequent investigation in molten glass.The direct methods permit direct determination of the rate of corrosion of refractories by glass at working temperatures and allow us to recommend the most corrosion resistant refractories for tests in service conditions.In laboratory conditions we established that the most corrosion resistant refractories in regard to original glass used for obtaining slag sitalls are bakor-33 and dense zirconium refractory. This may be explained by the formation of viscous reaction products in the contact layer which have a protective action on the refractory.Translated from Ogneupory, No. 5, pp. 56–60, May, 1967.  相似文献   

10.
The mechanism of corrosion of oxygen-free copper has been studied in stagnant aqueous sulfide solutions using corrosion potential and electrochemical impedance spectroscopy (EIS) measurements. Film structure and composition were examined on surfaces and on cross-sections prepared by focused ion beam (FIB) milling using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Experiments were conducted in anaerobic 5 × 10−5 mol dm−3 Na2S + 0.1 mol dm−3 NaCl solutions for exposure periods up to 4000 h (∼167 days) to mimic (at least partially) the conditions that could develop on a copper nuclear fuel waste container in a deep geologic repository. The corrosion film formed was a single cellular Cu2S layer with a non-uniform thickness. The film thickness increased approximately linearly with immersion time, which implied that the sulfide film formed on the Cu surface is non-protective under these conditions up to this exposure time. The film growth process was controlled by HS diffusion partially in the aqueous solution in the pores in the cellular sulfide film and partially in the bulk of the aqueous solution.  相似文献   

11.
Corrosion of glass in silica-saturated solution has been performed with the assumption that dissolution of silicate species from the glass network would not occur. Using surface-sensitive analytical techniques, we report experimental evidence suggesting the dissolution of silicate network species from a model nuclear waste glass, called international simple glass (ISG), in an aqueous solution initially saturated with soluble silica species. Results from low energy ion scattering and X-ray photoelectron spectroscopy reveal a complete depletion of mobile element species (B, Na) from the ISG surface and an enrichment of Zr on the outmost surface. In support of spectroscopic analyses, results from topographic imaging with atomic force microscopy show a stochastic dissolution of glass surface resulting in a higher surface roughness with increasing corrosion time in aqueous solution. This study shows that a true equilibrium between soluble silica species in the solution phase and silicate species in the glass network could not be warranted by performing corrosion experiments in the solution where dissolved silica species are initially equilibrated with amorphous silica in the presence of KOH. The leaching of mobile species (B, Na) could affect the saturation level of aqueous solution and induce further dissolution of the glass surface.  相似文献   

12.
Polyaniline (PANI) coatings were electrochemically synthesized on nickel (Ni) coated mild steel (MS) and their corrosion protection properties were investigated. In this work, the Ni layer (∼1 μm thick) was electrodeposited on MS under galvanostatic condition. Thereafter, the PANI coating was deposited over the Ni layer from aqueous salicylate medium by using cyclic voltammetry. These bi-layered composite coatings were characterized by cyclic voltammetry, UV–vis absorption spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The corrosion protection properties of Ni coated MS (Ni/MS) and PANI coated Ni/MS (PANI/Ni/MS) were investigated in aqueous 3% NaCl by using open circuit potential (OCP) measurements, potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). It was shown that the top layer of PANI exhibits a lower porosity behavior with respect to Ni coating and reduces the corrosion rate of Ni/MS almost by a factor of 3500 and increases the lifetime of Ni coating.  相似文献   

13.
14.
Hydrolysis kinetics of soda lime silicate glass (SLS) with 75 mol% SiO2 in different pH solutions was investigated. Fourier Transform Infrared (FTIR) spectroscopy was used to monitor and confirm the proposed corrosion mechanisms on the surfaces of prepared undoped (SLS) glass together with samples doped with one of the first 3d-transition metal oxides (TMO) (TiO2→CuO) when exposed to an aqueous solution for a short time period. The traditional proposed mechanism of silicate glass corrosion through ion exchange is analyzed in correlation with infrared reflectance vibrational spectra to confirm the suggested mechanism. The effects of transition metal oxides are followed and interpreted.  相似文献   

15.
Long-term chemical durability of borosilicate glasses that makes them a widely accepted form of nuclear waste disposal is achieved through the formation of a porous aluminosilicate gel layer that provides passivity and limits the transport of water to the reaction front. Detailed understanding of the porous silicate gel layer is thus critical in elucidating the corrosion mechanism of these glasses and to design of new glass composition for waste immobilization and other applications. In this paper, we use the diffuse charge reactive potential to generate porous aluminosilicate glass structures with compositions equivalent to the gel layers formed at the glass-water interface with an aim to understand the processing condition on the microstructure and atomic structure of these systems. We demonstrate the use of the charge scaling techniques is an effective approach to generate these porous structures with controllable pore mophologies. After initial validation of the potentials and calcium aluminosilicate glass structures using neutron diffraction, we created gel structures with compositions similar to well-known model nuclear waste borosilicate glasses. The porosities and the pore size distribution bear a strong correlation to the processing temperature, as well as to the local atomic structure. Thus, by controlling the processing parameters, the generated porous structures can be customized to closely resemble gel structures due to borosilicate glass corrosion. These results provide insights of the micro- and atomic structure features of the porous aluminosilicate glasses and on the optimal procedure to generate porous structures that can be comparable to experimentally observed gel layer structures thus to elaborate on the correlations between the structure and phenomena in glass-water interactions.  相似文献   

16.
Electroactive conducting polymer composite coatings of polyaniline (PANI) are electrosynthesized on styrene–butadiene rubber (SBR) coated stainless steel electrode by potentiostatic method using aqueous H2SO4 as supporting electrolyte. The protective behaviour of these coatings in different corrosion media (3.5% NaCl and 0.5 M HCl) is investigated using Tafel polarization curves, open circuit potential measurements and electrochemical impedance spectroscopy. The results reveal that SBR/PANI composite coating is much better in corrosion protection than simple PANI coating. The corrosion potential of composite films shifts to more noble values indicating that SBR/PANI composite coating act as an effective corrosion protective layer.  相似文献   

17.
The influence of the high-energy ball milling on the corrosion behavior of magnesium in aqueous media has been investigated through electrochemical experiments complemented by morphological, structural, chemical and surface analyses. The milling duration was varied from 0 to 40 h. Polarization curves show that the milling procedure improves the magnesium corrosion resistance in passive conditions (KOH solution) and in more active corrosion conditions (borate solution). This is illustrated by the corrosion potential which becomes nobler with milling. The variation of the polarization resistance and related corrosion current with milling time is also an indication of the improvement of the Mg corrosion resistance due to the milling. Moreover, the passive current is significantly lower for milled Mg. The Mg crystallite size is reduced from >100 to 34 nm after 10 h of milling and does not decrease significantly with further milling. The iron contamination of the Mg powder due to the erosion of the milling tools is very low (0.09 wt.% after 40 h of milling). In contrast, a significant oxygen contamination occurs during milling (2.6 wt.% after 40 h of milling). XPS and AES data indicate MgO enrichment in the bulk of the milled Mg without significant MgO increase at the powder surface. The corrosion improvement was attributed to the increase through the milling process of the density of surface defects and grain boundaries susceptible to increase the number of nucleation sites for Mg hydroxylation in aqueous media, leading to the rapid formation of a dense and protective Mg(OH)2 layer.  相似文献   

18.
In aqueous alkaline media (e.g. water-borne metallic paints) aluminium pigments react by the evolution of hydrogen. This corrosion reaction can be inhibited by addition of different water-soluble polymers with carboxyl groups like polyacrylic acids, styrene–maleic acid or styrene–acrylate copolymers. As a rough empirical rule can be stated that the corrosion-inhibiting effect of polymers with carboxyl groups increases with decreasing molecular mass and decreasing acid number. Moreover, the isoelectric point (IEP) of aluminium oxide (pH≈9) seems to be an important factor controlling corrosion inhibition (and adsorption) of polymers with carboxyl groups. Thermosetting phenolic resins (resoles) inhibit the corrosion reaction of aluminium pigment excellently at pH 8 but less effectively at pH 10. The corrosion-inhibiting functional group of resoles seems to be the chelating ortho-hydroxybenzyl alcohol structural part. In contrast, the nonionic water-soluble polymer polyvinyl alcohol does not inhibit the corrosion reaction. So, one may assume that an ionic interaction between aluminium pigment surface and polymer is necessary (but not sufficient) for corrosion inhibition.  相似文献   

19.
Due to the exceptional advantages of sol–gel process, organically modified silane (ormosil) coating has been applied to study the corrosion protection of aluminum alloy. In the present work, GPTMS/MTMS sol–gel solution was prepared by hydrolysis and condensation of 3-glycidoxypropyltrimetoxysilane (GPTMS) and methyltrimethoxysilane (MTMS) in aqueous solution of 0.05 M acetic acid in molar ratios 3:1. To prepare the ormosil coating solutions, a crosslinking agent hexamethoxymethylmelamine (HMMM) and a blocked acid catalyst p-toluenesulphonic (p-TSA) were combined with the sol–gel solution. Aluminum substrates were dip coated and cured at 130 °C for 45 min. Effectiveness of HMMM as a crosslinking agent was analyzed by evaluating corrosion resistance, chemical resistance and hydrophobicity of coating using potentiodynamic polarization method, immersion test and water contact angle, respectively. UV stability of sol–gel solution, ormosil coating formulation and coated substrate was also studied using UV–vis spectroscopy and UV-weatherometer to see performance of coating in outdoor application. Thermal behavior of ormosil was characterized using TGA and DSC. Surface morphology and structural characteristics were also characterized using SEM, AFM and FT-IR-RAS (reflection absorption spectroscopy). Pencil hardness, impact test and bend test were carried out to determine the adhesion, hardness and flexibility of coating.  相似文献   

20.
The corrosion inhibition of mild steel by means of newly synthesised triazole phosphonates 3-Vanilidene amino 1,2,4-triazole phosphonate (VATP), 3-Anisalidene amino 1,2,4-triazole phosphonate (AATP) and 3-paranitro benzylidene amino 1,2,4-triazole phosphonate (PBATP) was studied along with cetyl trimethyl ammonium bromide (CTAB) in natural aqueous environment using weight loss measurement, potentiodynamic polarisation and ac impedance measurement. Surface characterisation techniques like FT-IR, XRD and EDXA were also carried out to understand the corrosion inhibition mechanism. Addition of molybdate increases the inhibition efficiency of triazole in a synergistic manner. Results from experimental observation have indicated VATP as a better corrosion inhibitor for mild steel in aqueous solution. Additionally the formulation consisting of VATP, sodium molybdate and CTAB offered good corrosion inhibition efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号