首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用ZrSiO_4和Al_2O_3为原料,通过无压烧结法制备了不同MgO含量的Al_2O_3/Zr O_2/莫来石复相陶瓷,研究了复合陶瓷的显微组织、弯曲强度、断裂韧性和抗热震性能。结果表明:添加MgO有利于ZrO_2四方相的稳定,从而提高了陶瓷的弯曲强度、断裂韧性和抗热震性。MgO添加量为4%时,Al_2O_3/ZrO_2/莫来石复相陶瓷的弯曲强度达到最大值365 MPa,陶瓷的断裂韧性达到5.31 MPa·m~(1/2)。复相陶瓷热震后强度的损失率仅为5.61%。  相似文献   

2.
与单相的MgO和Y2 O3陶瓷相比,MgO-Y2 O3复相陶瓷具有更高力学性能的同时兼具良好的红外透过性,可以满足在极端条件下使用红外窗口材料的要求.本文分别采用沉淀法和软模板法制备了高比表面积的MgO和Y2 O3粉体,通过球磨将两种粉体混合均匀,利用SPS制备得到了复相陶瓷.主要探索了不同烧结温度对陶瓷微观结构、致密度、力学、热学及光学性能的影响.研究结果表明,复相陶瓷的最佳烧结温度为1200℃,密度达到完全致密,透过率最高为51%(4.17μm),硬度为10.31 GPa,断裂韧性为2.54 MPa·m1/2,杨氏模量为248 GPa,MSP强度为129 MPa以及室温热导率为15.57 W/(m·K).  相似文献   

3.
采用X射线衍射仪、扫描电镜(SEM)、电子能谱(EDS)、电子万能试验机和Archimedes排水法研究了不同Al_2O_3添加量对MgO结构和性能的影响。结果表明:Al_2O_3的添加改善了MgO陶瓷的烧结性能;Al_2O_3与MgO反应生成起结合作用的MgAl_2O_4分布在MgO陶瓷晶粒的周围,使颗粒间结合紧密并填充孔隙,从而降低气孔率,提升致密度;当Al_2O_3添加量为20%时,在1500℃烧结2h的样品综合性能最好,此时样品的线收缩率为20.93%,体积密度为2.422 g·cm~(-3),气孔率为12.41%,抗弯强度为45.6 MPa;Al_2O_3加入提高了MgO陶瓷的抗热震性,Al_2O_3添加量为10%时,MgO陶瓷的抗热震性最好。  相似文献   

4.
采用固相烧结法制备了含不同比例MnO的Ca_2Mg_2Al_(28)O_(46)材料,研究了材料的烧结性能、显微结构和热学性能。结果表明:1 650℃下Mn~(2+)取代Mg~(2+)固溶进入Mg Al_2O_4晶格形成Mg_(1–x)Mn_xAl_2O_4同构尖晶石固溶体,进而扩散进入Ca_2Mg_2Al_(28)O_(46),产生畸变的磁铅石结构,使晶粒形貌从六方片层状向等轴状发展,并加快了材料的致密化进程。含不同添加量MnO的Ca_2MgAl_(28)O_(46)材料1 750℃热处理后的体积密度为3.21~3.33 g/cm~3,闭口气孔率在0.4%~1.1%。随着MnO含量的增加,材料的热膨胀系数略有增大,但热导率明显提高,添加2%(质量分数)MnO试样的热膨胀系数由8.94×10~(–6)/K增加到9.41×10~(–6)/K,热导率由1.49 W/(m·K)增加到2.70 W/(m·K)。  相似文献   

5.
采用传统陶瓷生产工艺制备了(Y1-xLax)2O3(x=0~0.125)透明陶瓷.研究了陶瓷的显微结构、硬度、透光性及热导率.结果表明:La2O3可以有效促进陶瓷烧结,抑制晶粒长大.La2O3添加后,陶瓷硬度由786MPa提高到878MPa,陶瓷热导率明显降低,由16.92W/(m·K)降为5.68W/(m·K).制备...  相似文献   

6.
以MgO–Al_2O_3–CeO_2复合体系为烧结助剂,采用放电等离子烧结工艺制备氮化硅陶瓷。研究了MgO–Al_2O_3–CeO_2含量、烧结温度对氮化硅陶瓷显微结构及力学性能的影响;探讨了复合烧结助剂作用下氮化硅陶瓷的烧结机理。结果表明:当混合粉体中Si_3N_4、MgO、Al_2O_3和CeO_2的质量比为91:3:3:3、烧结温度为1600℃时,氮化硅烧结体相对密度(99.70%)、硬度(18.84GPa)和断裂韧性(8.82MPa?m1/2)达最大值,晶粒以长柱状的β相为主,α-Si_3N_4→β-Si_3N_4相转变率达93%;当混合粉体中Si_3N_4、MgO、Al2O3和CeO_2的质量比为88:4:4:4、烧结温度为1600℃时,烧结体抗弯强度(1086MPa)达到最大值。  相似文献   

7.
以Er2O3-Mg2Si-Yb2O3为三元复合烧结助剂,制备了力学性能优异的高导热氮化硅陶瓷,研究了Er2O3-Mg2Si-Yb2O3体系对氮化硅陶瓷致密化、微观结构、力学性能、热导率的影响。研究表明,当添加5%(质量分数,下同)Er2O3+2%Mg2Si+4%Yb2O3烧结助剂时,烧结助剂对氮化硅陶瓷致密度与晶界相含量的平衡效果最佳,此时氮化硅陶瓷具有最佳性能:抗弯强度为765 MPa,断裂韧性为7.2 MPa·m1/2,热导率为67 W/(m·K)。在烧结过程中,只添加5%Er2O3+2%Mg2Si的烧结助剂产生的液相量少且黏度高,不能使氮化硅陶瓷完成致密化;此外,当添加的Yb2O3含量超过4%时,烧结助剂产生大量的晶界相,降低了氮化硅陶瓷的性能。  相似文献   

8.
以工业级氧化铝和镁铝尖晶石为原料、石墨为造孔剂,通过干压法制备Al_2O_3–MgAl_2O_4复相多孔陶瓷支撑体。研究了原料配比、烧结温度和造孔剂含量对支撑体孔隙率、力学性能、孔径分布及耐酸碱腐蚀性的影响。结果表明:当Al_2O_3含量为90%(质量分数)、Mg Al_2O_4含量为10%、外加20%石墨时,在1 478℃烧结,制得的支撑体孔隙率为37.6%,抗弯强度为83.11 MPa,优于同等条件制备的Al_2O_3纯相支撑体的力学性能,该复相支撑体分别在80℃、10%的硫酸和氢氧化钠溶液中腐蚀24 h后,剩余抗弯强度为59.69和71.25 MPa,表明添加适量的Mg Al_2O_4,除了可以增加抗弯强度,可以提高其耐碱性能。  相似文献   

9.
以乱层结构h-BN(t-BN)和SiC纳米粉体为原料,B_2O_3为烧结助剂,利用放电等离子烧结技术(SPS)制备出SiC/h-BN复相陶瓷。采用X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行分析,研究烧结助剂含量对SiC/h-BN复相陶瓷的低温烧结行为、致密化、微观结构及力学性能的影响。结果表明:利用SPS低温烧结方法,添加少量B_2O_3添加剂,可有效地提高复相陶瓷的致密度和力学性能。与无添加剂烧结样品相比,烧结助剂的添加降低了样品烧结收缩起始温度,促进样品中片状h-BN晶粒的移动和重排,提高了颗粒间的结合强度。随着烧结助剂添加量的增加,复相陶瓷致密度显著增加,强度和韧性均呈现先增加后降低的趋势,在B_2O_3添加量为5%时,复相陶瓷相对密度和各项力学性能较高,其相对密度、抗弯强度、断裂韧性和弹性模量分别为96.92%、274.7MPa、2.91MPa·m1/2和127.2GPa,但添加过多B_2O_3,则不利于提高复相陶瓷的力学性能。  相似文献   

10.
《陶瓷》2017,(9)
利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3、Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性分别达到686MPa和7.42MPa·m~(1/2)。通过无压烧结工艺,在1750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7。笔者着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。在氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性却得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺入量为2wt%时断裂韧性达到最大(7.68MPa·m~(1/2)),提高了20%以上。  相似文献   

11.
B4C(W,Ti)C陶瓷复合材料的制备及其性能   总被引:11,自引:0,他引:11  
采用热压烧结工艺制备了B4C/(W,Ti)C陶瓷复合材料.研究表明:B4C/(W,Ti)C陶瓷材料烧结时将产生化学反应,反应产物为TiB2和W2B5.B4C/(W,Ti)C陶瓷材料的性能与(W,Ti)C的含量密切相关,随(W,Ti)C含量的增加,材料的致密度、抗弯强度和断裂韧性逐渐增加,硬度逐渐减小;当保温时间低于50min时,材料的致密度、抗弯强度和硬度显著降低;B4C/(W,Ti)C陶瓷复合材料的最佳性能参数为:抗弯强度693MPa,维氏硬度23.5GPa,断裂韧性3.9MPa·m1/2.磨损实验表明,B4C/(W,Ti)C陶瓷材料在低速小载荷的实验条件下,耐磨性能优异,在高速大载荷的实验条件下,磨损过程中局部点的高温导致试样表面发生氧化,加剧了材料的磨损.  相似文献   

12.
杨君刚  杨晓琳  韩茜 《硅酸盐通报》2015,34(6):1715-1719
本文分别以TiO2和MgO纳米粉体为烧结助剂,采用微波烧结技术制备了3Y-TZP/Al2O3复相陶瓷.研究了烧结助剂含量对材料相组成、致密化及力学性能的影响,通过XRD分析了复相陶瓷中t-ZrO2相的相对量变化,并采用SEM观察了弯曲断裂断口形貌.结果表明:随烧结助剂添加量的增加,微波烧结复相陶瓷的致密度、硬度和弯曲强度均有所增加,均优于传统烧结性能,陶瓷颗粒更细.烧结助剂添加量为0.2wt% MgO、0.4wt% TiO2,在1300℃微波烧结30 min时试样的致密度为98.1%,显微硬度和抗弯强度分别达18.9 GPa和626 MPa.  相似文献   

13.
实验以Ca-Ba-Mg-Al-B-Si-O玻璃与Al_2O_3粉料为原料,设计玻璃与Al_2O_3粉料复合的质量比分别为60∶40、55∶45、50∶50、45∶55,采用低温烧结法制备LED基板材料。研究结果表明:随着Al_2O_3含量(质量分数)增加,样品的烧成收缩率与热导率先增加后减小。添加45%Al_2O_3的玻璃/Al_2O_3材料于875℃烧结良好,试样烧成收缩率为12.82%,体积密度为3.10 kg/L,10 MHz下介电常数为8.03,介电损耗为0.000 7,热导率为2.89 W/(m·K)。高温下Ca~(2+)离子、Al~(3+)离子、Si~(4+)离子与O~(2-)离子聚集在一起发生了化学反应,形成了CaAl_2Si_2O_8晶体。玻璃/Al_2O_3烧结材料的主晶相为玻璃、氧化铝、钙长石,SEM显示烧结体微观结构致密。因此该体系材料比较适合用作低温烧结LED基板材料。  相似文献   

14.
以α-Si_3N_4粉和黑刚玉为原料、Gd_2O_3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si_3N_4复相陶瓷材料,研究了Gd_2O_3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd_2O_3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si_3N_4、β-Si_3N_4和O’-Sialon,添加Gd_2O_3一方面可在高温烧结过程中形成液相,促进α-Si_3N_4的"溶解–析出"过程,有利于α-Si_3N_4向β-Si_3N_4的晶型转变以及β-Si_3N_4晶粒的生长;另一方面可促进α-Si_3N_4与Al_2O_3和Si O_2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd_2O_3添加量为6%(质量分数)时,经1 600℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g·cm~(–3);抗折强度达到105.57 MPa。  相似文献   

15.
以Al_2O_3-Y_2O_3和Mg O-Y_2O_3为烧结助剂,通过热压烧结分别在1600℃和1800℃下制备Si_3N_4陶瓷。结果表明:以Al_2O_3-Y_2O_3助剂时,在1800℃热压烧结制备的Si_3N_4陶瓷具有显著的双峰结构和优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为15.60±0.27 GPa、1105.99±68.39 MPa和7.13±0.37 MPa·m~(1/2);以Mg O-Y_2O_3为助剂时,在1600℃热压烧结制备的Si_3N_4陶瓷具有较高的致密度,显微结构含有长径比较高的晶须状Si_3N_4晶粒,并且具有优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为16.53±0.21 GPa、1166.90±61.73 MPa和6.74±0.17 MPa·m~(1/2)。因此,在研究烧结助剂对Si_3N_4陶瓷性能的影响时,需结合其特定合适的烧结温度,才能有望获得综合性能优异的Si_3N_4陶瓷。  相似文献   

16.
通过在(Ti+B_4C)燃烧体系中引入WO_3+Al高能铝热剂,采用自蔓延离心熔铸方法制备TiB_2-TiC-(Ti,W)C复相陶瓷材料。结果表明,陶瓷是由规则的TiB_2片晶、TiC球晶以及(Ti,W)C固溶体组成,并发现少量Al_2O_3夹杂存在于陶瓷熔体中。随着铝热剂含量的增加,不仅提高了绝热燃烧温度,增进了陶瓷致密化,而且提高了陶瓷熔体中的W含量,提高了陶瓷硬度。TiB_2片晶诱发的裂纹偏转和桥接增韧大幅度提高了陶瓷的抗弯强度和断裂韧性。材料的硬度、抗弯强度和断裂韧性分别为24.6 GPa、584 MPa与20.3 MPa·m~(1/2)。当铝热剂添加过量,TiB_2相的含量下降,导致陶瓷力学性能有所下降。  相似文献   

17.
采用FeMo70合金和α-Al2O3粉体为原料,在1600 ℃保温2 h下埋炭无压烧结制备得到FeMo-Al2O3复相陶瓷.研究了FeMo70合金微粉的加入量对FeMo-Al2O3复相陶瓷的物相组成和力学性能的影响.结果表明,FeMo-Al2O3复相陶瓷中主要以α-Al2O3、Fe2Mo和Fe6Mo7N2三种物相形式存在.添加FeMo70合金后,Al2O3基体平均晶粒尺寸由4 μm增大到15 μm左右.FeMo-Al2O3复相陶瓷的洛氏硬度和断裂韧性均随FeMo70合金加入量的增加呈现出先增大后减小的趋势,且当FeMo70合金的加入量为13wt%时洛氏硬度(HRA)和断裂韧性(KIC)达到最大值,分别为88.3和3.7 MPa·m1/2.  相似文献   

18.
通过哈克密炼–模压成型法制备了线型低密度聚乙烯(PE-LLD)/Al_2O_3复合材料,并在不同温度条件下对复合材料的导热性能进行研究。通过扫描电子显微镜、热失重分析仪、差示扫描量热仪、激光导热仪和精密阻抗分析仪研究了复合材料中Al_2O_3的分散性及复合材料的热稳定性、熔融行为、导热性能和介电性能。结果表明,Al_2O_3均匀分散在PE-LLD基体中;添加微米级Al_2O_3后,复合材料的熔点和熔融焓变化不大,热稳定性能有所提高;当Al_2O_3添加量为100份时,复合材料的热导率为1.426W/(m·K),比纯PE-LLD的热导率提高218.0%;随着温度的升高,Al_2O_3的添加量越多,复合材料的热导率降低越明显;随着Al_2O_3添加量的增加,复合材料的介电常数和介电损耗增大,在低频时增加更明显。  相似文献   

19.
丁明伟  张政梅 《硅酸盐通报》2013,32(10):1998-2002
本文以SiC为基体,添加(W,Ti)C固溶体增韧相,采用热压烧结工艺制备出新型Sic/(w,Ti)C陶瓷复合材料.研究表明:SiC/(W,Ti)C陶瓷材料的性能与(W,Ti)C的含量、成烧温度、保温时间等密切相关.随(W,Ti)C含量的增加,材料的致密度、抗弯强度和断裂韧性增加,硬度减小;SiC/(W,Ti)C陶瓷复合材料的最佳性能参数为:抗弯强度631 MPa,维氏硬度25.944 GPa,断裂韧性4.38 MPa·m1/2.通过分析材料的显微结构和断口SEM照片,发现SiC/(W,Ti)C陶瓷材料的断裂机制为沿晶和穿晶断裂特征同时并存,即断裂方式为沿晶断裂和穿晶断裂相结合的混合断裂.  相似文献   

20.
在5.0GPa及1500~2000℃的压力和温度条件下,采用高压烧结的方法制备了B4C含量分别为10%和30%的TiB2-B4C陶瓷复合材料.对TiB2-B4C陶瓷复合材料的物相、显微结构、密度、硬度、热导率、电阻率等进行了分析.结果表明:材料在高压下没有发现化学反应生成新的相;TiB2-B4C陶瓷复合材料具有较高的致密性,没有明显的气孔;TiB2-30%B4C在1800℃下硬度最高,在4.9N载荷下可达27.8GPa,在9.8N载荷下可达24.3GPa;在常温下,热导率可达30.42W/(m·K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号