首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Liu  Yao  Xu  Zhitong  Qiao  Kaiming  Zhou  Houbo  Shen  Feiran  Yang  Tianzi  Wang  Jing  Ma  Tianyu  Hu  Fengxia  Shen  Baogen 《Journal of Materials Science》2021,56(36):20060-20070

The caloric effects under combined applications of magnetic field and hydrostatic pressure to a MnCoSi meta-magnet were investigated. Under a magnetic field change of 0–5 T, the maximum magnetic entropy change was enhanced by 35.7% when a 3.2kbar hydrostatic pressure was applied, and the cooling temperature span was extended by 60 K when a hydrostatic pressure of 9.7 kbar was applied. The coupled caloric entropy change, which originates from the coupling between the magnetism and volume, was calculated and accounted for the enhanced entropy change of MnCoSi. The present work facilitates the use of MnCoSi as a solid-state refrigerant and also enriches the investigation of the multicaloric effect under multiple external fields.

Graphical abstract
  相似文献   

2.

In this study, poly(L-lactic acid) (PLA)/low molar mass alkali lignin (aL) (1%, 5% and 10% w/w) composites were prepared primarily for a comprehensive understanding of the effect of aL on their antimicrobial properties, biocompatibility and cytotoxic behavior. The properties were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The mechanical, water vapor barrier properties and photodegradability were analyzed as well. The results showed a significant inhibiting effect of aL on the crystallization behavior of PLA, increased water barrier properties (up to 73%) and photodegradability. PLA/aL composites showed a tenfold reduction in Gram-positive bacteria viability, very good cellular response and very low cytotoxicity levels, thus validating these materials as non-cytotoxic and with high potential to be used as food packaging.

Graphical abstract
  相似文献   

3.
Zhang  Yuhang  Li  Jiejie  Zhou  Hongjian  Hu  Yiqun  Ding  Suhang  Xia  Re 《Journal of Materials Science》2021,56(28):15906-15920

Cold welding technique at room temperature is the preferred option in nano-assembly and nano-jointing. In this study, the cold welding behavior and mechanical strength of Cu50Zr50 metallic glass nanowires (MGNWs) in head-to-head contact are investigated by molecular dynamics simulation based on the embedded atom method potential. Effects of welding velocity, operating temperature, and size of nanowires are discussed with the consideration of stress, shear strain, atomic deformation processes, and weld quality. Our simulation results demonstrate that a desirable weld quality can be obtained at room temperature. With an increase in welding velocity, the shear deformation zones of the welded MGNWs increase, leading to a decrease in mechanical strength. However, the effect of temperature on the weld quality is not pronounced. Besides, the elongation ability of the welded MGNWs increases with increasing diameters of nanowires. Smaller diameter results in better weld quality due to the size effect of metallic glass. For a pair of MGNWs with different diameters, the necking and fracture of the welded MGNWs occur in the regions of the nanowire with a relatively smaller diameter. This study carries major implications for the fabrication and structural assembly of metallic glass-based nanomaterials.

Graphical Abstract
  相似文献   

4.
Luo  Huxin  Liu  Xingchong  Zhuang  Jia  Li  Haimin  Wang  Hanyu  Ma  Zhu  Xiang  Yan  Peng  Xian  Ouyang  Yukun  Zhou  Ruonan  Gong  Xiaoli 《Journal of Materials Science》2021,56(35):19552-19563

Planar perovskite solar cells (PSCs) have excellent photoelectric properties and show great commercialization potential. However, there are a lot of crystal defects in the perovskite films prepared by solution method, which reduces the development process of solar cells. In this work, alizarin red s (ARS) was doped into MAPbI3 films to passivate the defect. It was shown that the addition of ARS increased the quality of perovskite film and doped perovskite film exhibited improved light absorption. In addition, it was found that there was a strong interaction between ARS and perovskite, which reduced the density of defect states. The results showed that the passivated perovskite device had improved PL intensity, increased carrier lifetimes and reduced charge recombination. After passivation, the device obtained a higher open-circuit voltage (VOC) of 1.103 V where the control device was 1.055 V, and the best power conversion efficiency (PCE) of the doped device was 18.82%, which is 11.36% higher than that of the control device of 16.90%.

Graphical abstract
  相似文献   

5.

Silver nanowires find use in a myriad of applications, including communication systems, sensors, medical devices and electrical equipment. Temperature-dependent electrical and thermal properties of chemically derived silver nanowires are rarely explored. In the present work, seed-mediated synthesis of silver nanowires has been carried out, and their electrical and thermal conductivity at 300 K is found to be 1.848?×?107 S/m and 64.8 W/mK, respectively. A screen-printable ink of silver nanowires is formulated and printed on low-cost and widely used substrates like paper and cotton fabrics. Flexible printed electrodes could be made possible with uniform printed structures obtained in cotton fabric and paper substrate. The printed pattern exhibited sheet resistance of 0.7 Ω/sq. Screen-printed silver nanowires on paper show shielding efficiency of 99.9% in X band, which promotes them as excellent candidates in fabricating lightweight electronic devices by a one-step printing process.

Graphical abstract
  相似文献   

6.

Aquivion membrane displays improved properties as compared to Nafion membrane, partly due to shorter side chains. However, some improvements are still necessary for proton exchange membrane fuel cell to operate at low relative humidity. To overcome this drawback, the addition of clay nanoparticle into the Aquivion matrix can be considered. In this study, different composite membranes have been prepared mixing short-side-chain PFSA (perfluorosulfonic acid) Aquivion and selectively modified halloysite nanotubes for PEMFC low relative humidity operation. Halloysites were grafted with fluorinated groups, sulfonated groups, or perfluoro-sulfonated groups on inner or outer surface of the tubes. The obtained composite membranes showed improved properties, especially higher water uptake associated with reduced swelling and better mechanical strength compared to pristine Aquivion membrane and commercially available Nafion HP used as reference. The best performance in this study was obtained with Aquivion loaded with 5 wt% of pretreated perfluoro-sulfonated halloysite. The composite membrane, referred to as Aq/pHNT-SF5, displayed the largest water uptake and proton conductivity among the panel of membranes tested. The chemical stability was not affected by the presence of halloysite in the Aquivion matrix.

Graphical abstract
  相似文献   

7.
Ren  Jian-kun  Chen  Yun  Cao  Yan-fei  Xu  Bin  Sun  Ming-yue  Li  Dian-zhong 《Journal of Materials Science》2021,56(21):12455-12474

Non-dendritic microstructures are generally obtained in metals after semi-solid deformation (deformation during solidification); however, dendritic growth is preferred without deformation. The fragmentation of dendrites is recognized as an essential contributing factor to non-dendritic microstructures. However, the underlying mechanism of fragmentation needs to be clarified in depth. It is infamously hard for researchers to carry out a direct observation of this process. Moreover, a comprehensive numerical survey of this process is not trivial. The present research reported a new method to model dendritic growth during semi-solid deformation. The motion and deformation of the solid coupled with liquid flow in the melt were treated as the two-phase flow because plastic materials could be formulated as non-Newtonian fluids. The vector-valued phase-field formulation and the self-constructed Navier–Stokes solver made it possible to simulate the growth, motion, deformation, fragmentation and agglomeration of two dendrites coupled with liquid flow in the melt. Computational results suggest that fragmentation can occur when the grain boundary is wet and penetrated by the melt, giving new supporting evidence to a previously proposed mechanism for the fragmentation of dendrites.

Graphical abstract
  相似文献   

8.
Xu  Bo-Han  Wang  Bi-Lin  Yu  Kong-Bin  Bouchaïr  Abdelhamid 《Journal of Materials Science》2021,56(25):14114-14125

The development of eco-friendly connection material instead of steel is a challenging problem in timber structures. Following densification, the mechanical properties of low-density species can be significantly improved. Densified wood may be a potential connection material in timber structures. This paper reviewed the different processing for densified wood, and obtained favorable mechanical properties and dimensional stability based on small specimen sizes, which are much less than the applicable sizes in practice. A densification processing with alkali pretreatment was adopted for poplar widely cultivated in the world to produce the densified poplar, which has been rarely reported as connection material. Various specimens of densified poplar were tested to obtain their main mechanical properties such as strength and deformability. The set recovery of densified poplar was also measured to observe their dimensional stability. In addition, the hygroscopic swelling strains for the diameter of densified poplar dowel were measured to present their moisture-dependent behavior. The improved mechanical properties and dimensional stability confirmed the fact that densified poplar with alkali pretreatment can be an optimal connection material.

Graphical abstract
  相似文献   

9.

The properties of nanoparticle–polymer composites strongly depend on the network structure of the polymer matrix. By introducing nanoparticles into a monomer (solution) and subsequently polymerizing it, the formation of the polymer phase influences the mechanical and physicochemical properties of the composite. In this study, semi-conducting indium tin oxide (ITO) nanoparticles were prepared to form a rigid nanoparticle scaffold in which 1,6-hexanediol diacrylate (HDDA), together with an initiator for photo-polymerization, was infiltrated and subsequently polymerized by UV light. During this process, the polymerization reaction was characterized using rapid scan Kubelka–Munk FT-IR spectroscopy and compared to bulk HDDA. The conductivity change of the ITO nanoparticles was monitored and correlated with the polymerization process. It was revealed that the reaction rates of the radical initiation and chain propagation are reduced when cured inside the voids of the nanoparticle scaffold. The degree of conversion is lower for HDDA infiltrated into the mesoporous ITO nanoparticle scaffold compared to purely bulk-polymerized HDDA.

Graphical abstract
  相似文献   

10.
Cen  Hongyu  Wu  Chonggang  Chen  Zhenyu 《Journal of Materials Science》2022,57(3):1810-1832

Extension of corrosion inhibitors from traditional molecular-scale to nanoscale will not only be significant to develop green and efficient inhibitors, but also supplement the discipline system of corrosion inhibitors. However, many research on the interfacial behavior of nano-inhibitors have ignored the special colloidal properties of nanoparticles and show no obvious differences with traditional inhibitors. In this study, graphene oxide (GO) was functionalized with polydopamine (PDA) via covalent modifications and self-polymerization, and GO-PDA was studied as a corrosion inhibitor of carbon steel in HCl solution. Diversified measurements confirmed that GO-PDA can effectively protect carbon steel from corrosion, and the inhibition efficiency almost reached 90% at 100 mg/L. Interfering factors including immersion time and concentration were investigated. The lamellar nanoparticles adsorbed on the surface of carbon steel have formed a hydrophobic film in micro-nano structures. The transition from a negative charge on the GO surface to a positively charged GO-PDA contributed to adsorption at the interface. An initial model of nano-inhibitor was established to explicate the inhibition mechanism.

Graphical abstract
  相似文献   

11.
Yang  Shengna  Ding  Shiwen  Zhao  Chongyang  Huo  Siping  Yu  Fengjiao  Fang  Jun  Yang  Yang 《Journal of Materials Science》2021,56(24):13736-13751

In this paper, we report the synthesis of ligand-free Au nanoclusters (NCs)/g-C3N4 ultra-thin nanosheets (NSs) composite via a facile wet-impregnation method with post-annealing. On the one hand, post-annealing was used for the exfoliation of multi-layered g-C3N4 to obtain ultra-thin NSs; on the other hand, after Au25(Cys)18 NCs were loaded, post-annealing was further adopted to remove the ligands to obtain clean surface on Au NCs. It is demonstrated that the loaded Au NCs were aggregating resistant by post-annealing. Constructing heterojunctions with appropriate inter-band structures between the ligand-free Au NCs and the ultra-thin g-C3N4 NSs, along with the mono-distribution of the Au NCs and their intimate contact with g-C3N4 NSs ensured the smooth interfacial charge transfer. As a result, the composite photocatalysts exhibited efficient visible-light-induced photocatalytic H2 generation, mainly due to the local electric field enhancement induced by excitation of Au NCs under visible light and the improved charge separation in g-C3N4. This work provides a general strategy for the synthesis of noble metal NCs based composites with clean surface as the efficient photocatalysts for solar energy conversion.

Graphical Abstract

A stepwise post-annealing strategy is exploited to prepare g-C3N4 ultra-thin nanosheets modified with highly dispersed ligand-free Au nanoclusters for efficient photocatalytic hydrogen production.

  相似文献   

12.
Liu  Yanfang  Wang  Bin  Lu  Yingjiong  Su  Zhe  Li  Yong  Wu  Qi  Yang  Dongxu  Chen  Yuanfu  Wang  Shifeng 《Journal of Materials Science》2021,56(28):16000-16009

Oxygen evolution reaction (OER) for water splitting has a sluggish kinetics, thus significantly hindering the reaction efficiency. So far, it is still challenging to develop a cost-efficient and highly active catalyst for OER processes. To address such issues, we design and synthesize NiP2/FeP heterostructural nanoflowers interwoven by carbon nanotubes (NiP2/FeP@CNT) by a hydrothermal reaction followed by phosphating. The NiP2/FeP@CNT catalyst delivers excellent OER performance: it displays an ultralow Tafel slope of 44.0 mV dec?1 and a relatively low overpotential of 261 mV at 10 mA cm?2, better than RuO2 commercial catalyst; it also shows excellent stability without observable decay after 20-h cycling. The outstanding OER property is mainly attributed to its special 3D stereochemical structure of CNT-interwoven NiP2/FeP heterostructural nanoflowers, which is highly conductive and guarantees considerable active sites. Such nanostructure greatly facilitates the charge transfer, which significantly improves its electrocatalytic activity. This work offers a simple method to synthesize non-precious transition metal-based phosphide electrocatalysts with a unique hierarchical nanostructure for water splitting.

Graphical abstract
  相似文献   

13.

Hybrid organic–inorganic nanocomposites are great candidates for display and illumination systems due to improved optoelectronic properties and photostability. This work endeavours towards the scientific study of the influence of defect-induced zinc oxide nanoparticles (ZnO) on the optical characteristics of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). ZnO nanoparticles consist of many vacancies which facilitate light emission across the visible region. The green defective emission occurring due to the presence of oxygen vacancies in ZnO was used to re-excite MEH-PPV and hence, improve the luminescence quantum efficiency. The photostability of the nanocomposite was enhanced through charge transfer (prevents the formation of superoxides) and energy transfer (reduces the non-radiative decay) mechanisms.

Graphical abstract
  相似文献   

14.

We review the literature describing the use of interleaves to increase interlaminar fracture toughness in fibre-reinforced polymer composites and hence to improve damage tolerance. From an analysis of data provided in the literature from the use of microfibre and nanofibre interleaves, we show that the performance of these widely researched systems is clearly differentiated when plotted against the mean coverage of the interleaf. Using a simple analysis, we suggest that this can be attributed to the influence of their porous architectures on the infusion of resin. We show also that the superior toughening performance of microfibre interleaves is only weakly influenced by the choice of fibre. We find also that the inclusion of carbon nanotubes within interleaves to deliver multifunctional composites can be optimised by using a hybrid system with microfibres.

Graphical abstract
  相似文献   

15.
Xie  Kaihong  Guo  Peijing  Xiong  Zhangyi  Sun  Sufang  Wang  Haijun  Gao  Yongjun 《Journal of Materials Science》2021,56(22):12775-12788

Well-dispersed Ni-based nanocrystals with Ni/NiO hybrid nanostructure are built on cellulose-derived carbon (Ni-C-500), which exhibits outstanding photocatalytic performance in the hydrogen evolution from water. Control experiments confirm that the optimal nickel content in Ni-C-500 is 16 wt% and the optimum calcination temperature is 500 °C. The hydrogen evolution rate on Ni-C-500 in the presence of Eosin Y and triethanolamine (TEOA) reaches 13.5 mmol/gcat/h in the first hour, which is even higher than that on commercial Pt/C catalyst (11.4 mmol/gcat/h). The carbon support facilitates the transfer of photogenerated electrons from photosensitizer to Ni-based nanocrystals, efficiently preventing the recombination of photogenerated electrons and holes during the photocatalytic procedure. Density functional theory (DFT) calculations further demonstrate that the NiO islands on Ni(111) surface facilitate the adsorption of water molecules because of the interaction between the oxygen atom of NiO island and the hydrogen atom of water. Furthermore, produced Had around NiO island of Ni(111) surface is more easily to form hydrogen on Ni/NiO hybrid nanostructure than on clean Ni(111) surface.

Graphical abstract

Ni/NiO hybrid nanostructure supported on biomass carbon for visible-light photocatalytic hydrogen evolution

  相似文献   

16.

Silica aerogel composites reinforced with different aramid fibres have been synthesized and compared considering their potential use in thermal protection systems of Space devices. These composites were prepared from tetraethoxysilane and vinyltrimethoxysilane and the network was strengthened with aramid fibres. The results showed that the physical and chemical properties of the fibres were relevant, leading to composites with different properties/performance. In general, the obtained values for bulk density were low, down to 150 kg m?3. Very good thermal properties were achieved, reaching thermal conductivities bellow 30 mW m?1 K?1, and thermal stability up to 550 °C in all cases. Short length fibres produce stiffer composites with lower thermal conductivities, while among longer fibres, meta-aramid-containing fibres lead to nanocomposites with best insulation performance. Standard tests for Space materials qualification, as thermal cycling and outgassing, were conducted to assess the compliance with Space conditions, confirming the suitability of these aerogel composites for this application.

Graphical abstract
  相似文献   

17.
Wu  Xin  Luo  Qunyi  Yin  Sixing  Lu  Wentao  He  Hua  Guo  Cun-Yue 《Journal of Materials Science》2021,56(35):19311-19328

Organic/inorganic thermoelectric composites have played an important role in the development of new, green, and renewable energy sources with potential applications in efficient thermal management, flexible electronics, and bioelectronics. Electrochemical syntheses, including electropolymerization, electrochemical deposition, electrochemical doping, electrochemical post-processing, etc., require no addition of surfactants or oxidants, the products of which are easy to separate and purify, providing clean, efficient, and facile routes for the preparation of organic thermoelectric materials and their composites. In this review, the preparation, properties, and applications of organic/inorganic thermoelectric composites from electrochemical synthesis were reviewed in detail, offering a perspective on the recent advances in the field.

Graphical abstract
  相似文献   

18.

Sustainable betalain pigments extracted from beetroots were used as eco-friendly film coating over aluminium surface. The film coating was examined and verified by corrosive 1.0 M HCl solution. Characterization of chemical structure of the betalain pigments was done using spectroscopic attenuated total reflectance Fourier transform infrared (ATR-FTIR) and UV–Vis technique. Scanning electron microscope technique was used to demonstrate the eco-friendly film coating before and after been examined via corrosive 1.0 M HCl solution. Various operating conditions were studied to meet highest inhibition efficiency values such as betalain concentration, operating temperature and turbulent flow, and maximum inhibition efficiency?=?98.4% was displayed. Multiple adsorption isotherms like Langmuir, Temkin, and Freundlich were used effectively to determine equilibrium constants and adsorption parameters. Dynamic investigations revealed a decline of rate of corrosion (RC) and rise of activation energy values (Ea) at higher betalain concentrations. Thermodynamic investigations revealed physisorption process, exothermic enthalpy, and low entropic values of betalain on aluminium surface. The noticeable specifications of low cost, abundance and sustainability, environmentally friendly, and high technical feasibility of betalain pigments adapt them to be the futuristic outstanding sustainable film coating for metal surfaces.

Graphical abstract
  相似文献   

19.

Three-dimensional (3-D) printing, also known as additive manufacturing, refers to a method used to generate a physical object by joining materials in a layer-by-layer process from a three-dimensional virtual model. 3-D printing technology has been traditionally employed in rapid prototyping, engineering, and industrial design. More recently, new applications continue to emerge; this is because of its exceptional advantage and flexibility over the traditional manufacturing process. Unlike other conventional manufacturing methods, which are fundamentally subtractive, 3-D printing is additive and, therefore, produces less waste. This review comprehensively summarises the application of additive manufacturing technologies in chemistry, chemical synthesis, and catalysis with particular attention to the production of general laboratory hardware, analytical facilities, reaction devices, and catalytically active substances. It also focuses on new and upcoming applications such as digital chemical synthesis, automation, and robotics in a synthetic environment. While discussing the contribution of this research area in the last decade, the current, future, and economic opportunities of additive manufacturing in chemical research and material development were fully covered.

Graphical abstract
  相似文献   

20.

Proton conductivity, morphology, phase composition and mechanical properties of (1-x)CsH2PO4-xp(VDF/HFP) (x?=?0.05–0.25, weight ratio) polymer electrolytes were investigated for the first time. The chemical interaction of the organic matrix and acid salt was not observed and crystal structure of CsH2PO4 was preserved. A method for the synthesis of thin membranes with uniform distribution of the components was proposed. Thin flexible membranes with uniform distribution of sub-micrometer CsH2PO4 particles in the polymer membranes and improved hydrolytic stability were obtained firstly by using a bead mill. The mechanical strength of the hybrid polymer compounds was determined using the Vickers microhardness measurements. Proton conductivity in the (1-x)CsH2PO4-xp(VDF/HFP) electrolytes decreases monotonically with x increase due to the «conductor–insulator» percolation. Nevertheless, the values of proton conductivity remain sufficiently high, and along with small thickness, flexibility, improved mechanical and hydrophobic properties, it makes polymer electrolytes based on CsH2PO4 promising for membranes of medium-temperature fuel cells.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号