首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To get insight into the catalysis effect of Fe doping in the CeO2, the structures and electronic properties of Fe-doped CeO2(111), and CO adsorption on the Ce0.92 Fe0.08O2(111) surface are investigated by using the DFT + U method. The oxygen vacancy formation energy of the Fe-doped ceria(111) is reduced and the Fe dopant tends to be the center of oxygen vacancy clusters. On the Ce0.92 Fe0.08O2(111) surface two types of adsorption of CO are found: physisorbed CO and formed CO2. For the former, the molecule remains intact and for the latter, a CO2 molecule releases and an oxygen vacancy forms on the surface.  相似文献   

2.
Ce1?xFexO2?y (0≤x≤0.05) nanopowders were synthesized using hydrothermal method at low calcination temperature and low doping regime. Structural and morphological characterization has been carried out by the X-ray diffraction method and non-contact atomic force microscopy. Vibrational properties were investigated by Raman spectroscopy. It was observed that the content of oxygen vacancies increased significantly with Fe doping up to 3 mol%. For higher dopant concentration, phase separation was detected. The optical properties of pure and Fe3+-doped CeO2?y samples were investigated by spectroscopic ellipsometry. Several analytical models were applied to analyze the optical absorption onset of ceria defective structure. It was found that, Cody–Lorentz model most suitably described the sub-band gap region of CeO2?y nanopowders and consequently gave more accurate band gap values, which are closer to the direct band gap transitions than to the indirect ones. The increased content of localized defect states in the ceria gap and corresponding shift of the optical absorption edge towards visible range in Fe-doped samples can significantly improve the optical activity of nanocrystalline ceria.  相似文献   

3.
A series of Fe2O3–CeO2 composite catalysts were synthesized by coprecipitation and characterized by X-ray diffraction (XRD), BET surface area measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Their catalytic activities in CO oxidation were also tested. The Fe2O3–CeO2 composites with an Fe molar percentage below 0.3 form solid solutions with the CeO2 cubic fluorite structure, in which the doped Fe3+ initially substitutes Ce4+ in fluorite cubic CeO2, but then mostly locate in the interstitial sites after a critical concentration of doped Fe3+. With an Fe molar percentage between 0.3 and 0.95, the Fe2O3–CeO2 composites are mixed oxides of the cubic fluorite CeO2 solid solution and the hematite Fe2O3. XPS results indicate that CeO2 is enriched in the surface region of Fe2O3–CeO2 composites. The Fe2O3–CeO2 composites have much higher catalytic activities in CO oxidation than the individual pure CeO2 and Fe2O3, and the Fe0.1Ce0.9 composite shows the best catalytic performance. The structure-activity relation of the Fe2O3–CeO2 composites in CO oxidation is discussed in terms of the formation of solid solution and surface oxygen vacancies. Our results demonstrate a proportional relation between the catalytic activity of cubic CeO2-like solid solutions and their density of oxygen vacancies, which directly proves the formation of oxygen vacancies as the key step in CO oxidation over oxide catalysts.  相似文献   

4.
In this study, we report template and surfactant‐free, low temperature (70°C) synthesis of needle‐like α‐FeOOH and its conversion at 400°C into α‐Fe2O3 nanorods using Fe(+2) and Fe(+3) chlorides and urea as a hydrolysis‐controlling agent. The isolated needle‐like α‐FeOOH indicates asparagus‐type growth pattern having length ca. 600 nm with 80 nm diameter at base and apex diameter of around 10 nm. The sample on heating (α‐Fe2O3) shows nanorod‐like morphology. The samples were characterized using various physicochemical characterization techniques such as XRD, Raman spectroscopy, UV‐Vis spectroscopy, particle size distribution analysis, Field Emission Scanning Electron Microscopy (FE‐SEM), and humidity sensing performance. The humidity sensing behavior of both α‐FeOOH and α‐Fe2O3 was studied. The α‐FeOOH shows quicker (10 s) and higher response toward change in humidity from 20%RH to 90%RH as compared with α‐Fe2O3 (60 s). Their typical morphology and crystalline structure plays an important role in humidity sensing behavior.  相似文献   

5.
《Ceramics International》2016,42(10):11724-11731
Cobalt-doped cerium dioxide thin films exhibit room temperature ferromagnetism due to high oxygen mobility in doped CeO2 lattice. CeO2 is an excellent doping matrix as there is a possibility of it losing oxygen while retaining its structure. This leads to increased oxygen mobility within the fluorite CeO2 lattice, leading to formation of Ce3+ and Ce4+ species. Magnetic ceria materials are important in several applications from magnetic data storage devices to magnetically recoverable catalysts. In this paper, the room temperature ferromagnetism of rf sputtered Co doped CeO2 thin films is reported whereas undoped CeO2 thin films exhibit paramagnetic behavior. The ferromagnetic properties of the Co doped films were explained based on oxygen vacancies created by Co ions in Ce sites. This is further supported by X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman. Change in surface morphology due to Co doping of the samples were analyzed using atomic force microscopy (AFM).  相似文献   

6.
《Ceramics International》2016,42(5):6187-6197
This paper reports on the synthesis of pristine α-Fe2O3 nanorods and Fe2O3–ZnO core–shell nanorods using a combination of thermal oxidation and atomic layer deposition (ALD) techniques; the completed nanorods were then used for ethanol sensing studies. The crystal structure and morphology of the synthesized nanostructures were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The sensing properties of the pristine and core–shell nanorods for gas-phase ethanol were examined using different concentrations of ethanol (5–200 ppm) at different temperatures (150–250 °C). The XRD and SEM revealed the excellent crystallinity of the Fe2O3–ZnO core–shell nanorods, as well as their uniformity in terms of shape and size. The Fe2O3–ZnO core–shell nanorod sensor showed a stronger response to ethanol than the pristine Fe2O3 nanorod sensor. The response (i.e., the relative change in electrical resistance Ra/Rg) of the core–shell nanorod sensor was 22.75 for 100 ppm ethanol at 200 °C whereas that of the pristine nanorod sensor was only 3.85 under the same conditions. Furthermore, under these conditions, the response time of the Fe2O3–ZnO core–shell nanorods was 15.96 s, which was shorter than that of the pristine nanorod sensor (22.73 s). The core–shell nanorod sensor showed excellent selectivity to ethanol over other VOC gases. The improved sensing response characteristics of the Fe2O3–ZnO core–shell nanorod sensor were attributed to modulation of the conduction channel width and the potential barrier height at the Fe2O3–ZnO interface accompanying the adsorption and desorption of ethanol gas as well as to preferential adsorption and diffusion of oxygen and ethanol molecules at the Fe2O3–ZnO interface.  相似文献   

7.
《Ceramics International》2016,42(16):18597-18604
Pristine and TiO2 nanoparticle-decorated Fe2O3 nanorods were synthesized via thermal oxidation of Fe thin foils, followed by the solvothermal treatment with titanium tetra isopropoxide (TTIP) and NaOH for TiO2 nanoparticle-decoration. Subsequently, gas sensors were fabricated by connecting the nanorods with metal conductors. The structure and morphology of the pristine and TiO2 nanoparticle-decorated Fe2O3 nanorods were examined via X-ray diffraction and scanning electron microscopy, respectively. The gas sensing properties of the pristine and TiO2 nanoparticle-decorated Fe2O3 nanorod sensors with regard to H2S gas were examined. The TiO2 nanoparticle-decorated Fe2O3 nanorod sensor showed a stronger response to H2S than the pristine Fe2O3 nanorod sensor. The responses of the pristine and TiO2 nanoparticle-decorated Fe2O3 nanorod sensors were 2.6 and 7.4, respectively, when tested with 200 ppm of H2S at 300 °C. The TiO2 nanoparticle-decorated Fe2O3 nanorod sensor also showed a faster response and recovery than the sensor made from pristine Fe2O3 nanorods. Both sensors showed selectivity for H2S over NO2, SO2, NH3, and CO. The enhanced sensing performance of the TiO2 nanoparticle-decorated Fe2O3 nanorod sensor compared to that of the pristine Fe2O3 nanorod sensor might be due to enhanced modulation of the conduction channel width, the decorated nanorods’ increased surface-to-volume ratios and the creation of preferential adsorption sites via TiO2 nanoparticle decoration. The dominant sensing mechanism in the TiO2 nanoparticle-decorated Fe2O3 nanorod sensor is discussed in detail.  相似文献   

8.
To improve the lattice structure of CeO2 and the transmission capacity of oxygen, Ce1  xFexO2(x  0.2)solid solutions were prepared by a hydrothermal method and used in oxidative dehydrogenation of ethylbenzene to styrene with CO2. Ce1  xFexO2 solid solutions were characterized by powder X-ray diffraction, Raman spectroscopy, N2-adsorption, H2 temperature-programmed reduction and H2–O2 titration. Results showed that approximately 20% of Fe3 + could dissolve into the CeO2 lattice while portions of Fe2O3 were highly dispersed on the surface of the Ce1  xFexO2 solid solution. The formation of Ce–Fe solid solutions could create more oxygen vacancies to promote the absorption and activation of CO2, which improves the activity of the catalyst and increased ethylbenzene conversion by as much as 13%.  相似文献   

9.
《Ceramics International》2020,46(12):20385-20394
Mesoporous Fe-doped In2O3 nanorods derived from metal-organic frameworks (In/Fe-MIL-68s) were synthesized for NO2 detection. The morphologies, structures and NO2 gas-sensing performances of the Fe–In2O3 nanorods were systematically investigated. Texture characterizations demonstrate that the as-prepared Fe–In2O3 nanorods show rich porous structures, high specific surface areas and reduced grain sizes. Gas-sensing measurements display that the Fe–In2O3 nanorods derived from In/Fe-MIL-68s with the Fe(Ⅲ) content of 5 mol.% (Fe(5)-In2O3) exhibit high response (82) and short response/recovery time (70/65 s) towards 2 ppm NO2 at 80 °C compared with their counterparts. Besides, superior selectivity and good stability are observed. The sensing mechanism studies reveal that the improved gas-sensing performances are attributed to the decrease in the gran size, the formation of rich oxygen vacancies and band gaps narrowing caused by Fe(Ⅲ) doping. Therefore, this work indicates that the Fe–In2O3 nanorods derived from metal-organic frameworks precursors can be a promising candidate for NO2 detection.  相似文献   

10.
《Ceramics International》2016,42(16):18495-18502
Cerium-based nanohybrids have attracted considerable attention in photocatalytic research owing to their remarkable potential in the photodegradation of environmental pollutants. However, the process of nanohybrid formation suffers from complex operations with specialized equipment, extreme conditions, long durations, and low yields, making it infeasible for efficient utilization. Considering the above obstacles, we herein describe the first pulsed laser ablation (PLA) for the synthesis of oxygen vacancy affluent CeO2/Ce2O3 nanohybrids, as an alternative to hydrothermal and calcination methods. The microstructures and optical properties of the nanocomposites are characterized by TEM, XRD, XPS, and DRS analysis. The photocatalytic activity of the CeO2/Ce2O3 nanohybrid showed an MB dye degradation rate superior to that of bare CeO2 nanostructures. The enhanced performance of CeO2/Ce2O3 was attributed to an oxygen-vacancy-driven Z-scheme mechanism, where efficient separation of the photogenerated charge carriers significantly contributed to photocatalytic enhancement. This was further evidenced by both PL and scavenger experiment results. Moreover, the synthesized CeO2/Ce2O3 nanocomposites exhibit a strong blue emission, which could have potential applications in LED manufacturing.  相似文献   

11.
Preparing a heterojunction structure in different metal oxides is an efficacious method to improve the gas-sensing properties. In this article, a novelty SnO2 nanorod/spindle-like Fe2O3 heterostructure was successfully fabricated through a simple two-step hydrothermal route. The morphological characterization revealed that the spindle-shaped Fe2O3 with length and diameter of 400 and 100 nm were firstly fabricated by a hydrothermal process, and then a large number of SnO2 nanorods (lengths of 30 nm and diameterd of 8 nm) covered the spindle-shaped Fe2O3 uniformly. In order to facilitate better practical applications, the gas sensing performance of sensors based on SnO2/Fe2O3 nanostructures and pure Fe2O3 nanospindles on volatile organic compounds were systematically studied. Gas sensing tests indicated that such hierarchical SnO2/Fe2O3 heterostructures revealed improved acetone sensing performance compared to pure spindle-like Fe2O3, and the enhanced gas-sensitivity performance possibly be attributed to the synergistic effect and heterojunction of the interface between spindle-like Fe2O3 and SnO2 nanorod. Additionally, this research on as-obtained SnO2/Fe2O3 hierarchical assembly may provide a new insight and a rational strategy to upgrade the sensing performance of certain semiconductor metal oxide materials by rationally designing various novel layered nanostructures in the future.  相似文献   

12.
《Ceramics International》2023,49(3):4929-4943
Ceria is widely used in industrial fields due to its unique chemical properties. In this work, a series of CeO2 particles with controllable morphology, size, and defect concentration were obtained by a simple molten salt method. The adjustment of temperature and molten salt concentration has a considerable effect on the morphology and particle size of the final CeO2 particles while prolonging the holding time has little effect. Ion doping and reducing atmosphere calcination were used to regulate the defect concentration to improve the chemical activity of CeO2 particles. SEM results show that the morphology of CeO2 particles transforms from sphere to octahedron under the two treatments. The Rietveld refinement results and the XPS spectra indicate that increasing calcination temperature, reducing atmosphere calcination and ion doping are beneficial to improving the oxygen vacancies and Ce3+ concentration of CeO2 samples, which are the reason for enhancing the photocatalytic activity of the samples. Moreover, the oriented attachment, agglomeration and merging of crystals formed by the decomposition of cerium precursors are the key to the growth of CeO2 particles. Aggregates with exposed low-energy planes merge directly to form particles of various morphologies to maintain their own low energy.  相似文献   

13.
《Ceramics International》2022,48(21):31418-31427
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) fuel-cell cathode stands out because of its ultrahigh ionic conductivity and excellent electrocatalytic activity, but it is still very subject to instability. Here, a new strategy of Ce doping is proposed to boost the stability and activity of the BSCF cathode. A one-pot combustion method is employed to synthesize (Ba0.5Sr0.5)1–xCexCo0.8Fe0.2O3-δ (x=0–0.2) cathodes. Both BSCF and (Ba0.5Sr0.5)0.9Ce0.1Co0.8Fe0.2O3-δ have a cubic perovskite structure. (Ba0.5Sr0.5)0.8Ce0.2Co0.8Fe0.2O3-δ shows two phases of cubic perovskite and fluorite ceria. Proper Ce doping can boost the electrical conductivity of BSCF, and can dramatically reduce the polarization resistance of BSCF cathode. Ce doping significantly improved BSCF cathode long-term stability by 160 h. Moreover, ten-percent Ce doping in BSCF highly improves single-cell output performance from 516.33 mW cm?2 to 629.75 mW cm?2 at 750 °C. The results reveal that Ce doping as a potential strategy for enhancing the stability and activity of BSCF cathode is promising.  相似文献   

14.
The catalytic oxidation of soot particulates has been investigated over CeO2, CeO2–ZrO2 and CeO2–HfO2 nanocomposite oxides. These oxides were synthesized by a modified precipitation method employing dilute aqueous ammonia solution. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and BET surface area methods. The soot oxidation has been evaluated by a thermogravimetric method under ‘tight contact’ conditions. The XRD results revealed formation of cubic CeO2, Ce0.75Zr0.25O2 and Ce0.8Hf0.2O2 phases in case of CeO2, CeO2–ZrO2 and CeO2–HfO2 samples, respectively. TEM studies confirm the nanosized nature of the catalysts. Raman measurements suggest the presence of oxygen vacancies, lattice defects and oxide ion displacement from normal ceria lattice positions. UV-Vis DRS studies show presence of charge transfer transitions Ce3+←O2? and Ce4+←O2? respectively. The catalytic activity studies suggest that the oxidation of soot could be enhanced by incorporation of Zr4+ and Hf4+ into the CeO2 lattice. The CeO2–HfO2 combination catalyst exhibited better activity than the CeO2–ZrO2. The observed high activity has been related to the nanosized nature of the composite oxides and the oxygen vacancy created in the crystal lattice.  相似文献   

15.
《Ceramics International》2023,49(15):24922-24930
Although considerable research works have witnessed the important modulations of oxygen vacancies on the optical, electrical, and magnetic properties of SnO2 nanostructures, it is not easy to control oxygen vacancy defects in such systems.The difficulty stems from that oxygen vacancy is a kind of atomic defect, and its distribution is sensitive to process conditions and external factors, which makes direct characterization and purposeful control difficult. The purpose of this work on Ce-doped SnO2 nanocrystals is to investigate the tolerance of the host lattice to Ce ions, the population and evolution of Ce3+/Ce4+ ions, and the possibility to adjust oxygen vacancies by Ce3+ ions, and then focus on the influence of oxygen vacancy defects on the band gap and luminescence performance. As Ce doping concentration increases from 0 to 12 at.%, the doped system changes from Ce3+ dominated at low doping amount (≤3 at.%) to Ce3+/Ce4+ coexistence at medium doping concentration (3 at.% ∼ 9 at.%), to occurrence of CeO2 impurity phase at over doping (∼12 at.%). The optimum doping occurs at 6 at.%, which corresponds to the saturated critical point of Ce3+ content and the maximum oxygen vacancy concentration. Importantly, the oxygen vacancies in the current Ce-doped SnO2 nanocrystals is directly regulated by the Ce3+ ion concentration on the Sn sites, which plays an important role in the band gap tuning and visible light emission. With Ce concentration increasing from 0 to 12 at.%, the band gap monotonicity decreases from 3.36 eV to 3.12 eV, while the intensity of the oxygen vacancy luminescence band first increases and then decreases, with the turning point at 6 at.%. Both band gap narrowing effect and enhanced emission indicate that Ce-doped SnO2 should be a promising method to design and manufacture visible light responsive SnO2 based optoelectronic materials by manipulating oxygen vacancy defects.  相似文献   

16.
In this article, a facile one-step strategy for the synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/carbon nanotubes (CNT) catalysts was discussed. The as-prepared catalysts exhibited 73.6–99.4% NO conversion at 120–180 °C at a weight hourly space velocity (WHSV) of 210 000 ml·gcat 1·h 1, which benefited from the formation of amorphous MnO2, Fe2O3, CeO2, and Ce2O3, as well as high Ce3 + and surface oxygen (Oε) contents. The mechanism of formation of MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts was also proposed.  相似文献   

17.
Three kinds of complex oxides oxygen carriers (CeO2–Fe2O3, CeO2–ZrO2 and ZrO2–Fe2O3) were prepared and tested for the gas–solid reaction with methane in the absence of gaseous oxidant. These oxides were prepared by co-precipitation method and characterized by means of XRD, H2-TPR and Raman. The XRD measurement shows that Fe2O3 particles well disperse on ZrO2 surface and Ce–Zr solid solution forms in CeO2–ZrO2 sample. For CeO2–Fe2O3 sample, only a small part of Fe3+ has been incorporated into the ceria lattice to form solid solutions and the rest left on the surface of the oxides. Low reduction temperature and low lattice oxygen content are observed over ZrO2–Fe2O3 and CeO2–ZrO2 samples, respectively by H2-TPR experiments. On the other hand, CeO2–Fe2O3 shows a rather high reduction peak ascribed to the consuming of H2 by bulk CeO2, indicating high lattice oxygen content in CeO2–Fe2O3 complex oxides. The gas–solid reaction between methane and oxygen carriers are strongly affected by the reaction temperature and higher temperature is benefit to the methane oxidation. ZrO2–Fe2O3 sample shows evident methane combustion during the reducing of Fe2O3, and then the methane conversion is strongly enhanced by the reduced Fe species through catalytic cracking of methane. CeO2–ZrO2 complex oxides present a high activity for methane oxidation due to the formation of Ce–Zr solid solution, however, the low synthesis gas selectivity due to the high density of surface defects on Ce–Zr–O surface could also be observed. The highly selective synthesis gas (with H2/CO ratio of 2) can be obtained over CeO2–Fe2O3 oxygen carrier through gas–solid reaction at 800 °C. It is proposed that the dispersed Fe2O3 and Ce–Fe solid solution interact to contribute to the generation of synthesis gas. The reduced oxygen carrier could be re-oxidized by air and restored its initial state. The CeO2–Fe2O3 complex oxides maintained very high catalytic activity and structural stability in successive redox cycles. After a long period of successive redox cycles, there could be more solid solutions in the CeO2–Fe2O3 oxygen carrier, and that may be responsible for its favorable successive redox cycles performance.  相似文献   

18.
《Ceramics International》2020,46(11):18791-18799
Morphology features of cerium oxide nanoparticles, such as size and agglomeration, are important as a coating that improves corrosion resistance and as reinforcement in mechanical applications. In this work, the influence of two heat treatments (160° and 190 °C) in combination with three different chelating agents in the preparation of CeO2 and CeO2 decorated on graphite (CeO2_Gr) nanoparticles is studied. The novelty of this work is that CeO2_Gr was successfully prepared using the hydrothermal method. All the samples evaluated by X-ray diffraction exhibit a single fluorite-type structure in the cubic phase and Fm3m space group. The spherical harmonics method using the Fullprof Suite program was used to determine the average crystallite sizes, which were 9 nm for CeO2 and 7 nm for CeO2_Gr. Transmission electron micrographs for the prepared samples with citric acid showed non-agglomerate particles with homogeneous particle sizes and a quasi-spherical shape distribution. Raman spectra show a band centre at 600 cm-1 associated with the presence of Frenkel-type oxygen vacancies that induced the reduction of Ce4+ to Ce3+. The analysis of X-ray photoelectron spectra corroborates the coexistence of Ce3+ and Ce4+ species for CeO2 and CeO2_Gr nanoparticles. This work forms new perspectives in the development of CeO2 decorated on graphite prepared by the hydrothermal method to obtain composites not only for sensing applications and wastewater treatment but also for corrosion resistance and reinforcement materials.  相似文献   

19.
The water–gas shift (WGS) reaction of Pt/Ce0.6Zr0.4O2 catalyst was studied, as well as the reference catalysts Pt/CeO2 and Pt/ZrO2. In situ electronic conductivity measurements under reactive atmosphere show that surface oxygen vacancies of Pt/Ce0.6Zr0.4O2 diffuse into the bulk materials at the temperature typical for the operation of WGS reaction, i.e., bellow 623 K. Compared with Pt/CeO2, it was found that the oxygen storage capacity (OSC) was higher for Pt/Ce0.6Zr0.4O2 catalyst. Pt/Ce0.6Zr0.4O2 shows a markedly higher CO conversion rate than Pt/CeO2 and Pt/ZrO2 catalysts, which was interpreted by more active oxygen species available and higher coke resistance.  相似文献   

20.
The role of Fe promoters has been investigated on Pd/ceria, Pt/ceria and Rh/ceria catalysts for the water–gas shift (WGS) reaction in 25 torr of CO and H2O under differential reaction conditions. While no enhancement was observed with Pt and Rh, the activity of Pd/ceria increased by as much as an order of magnitude upon the addition of an optimal amount of Fe. Similarly, the addition of 1 wt% Pd to an Fe2O3 catalyst increased the WGS rate at 453 K by a factor of 10 over that measured on Fe2O3 alone, while the addition of Pt or Rh to Fe2O3 had no effect on rates. The amount of Fe that was necessary to optimize the rates increased with Pd loading but was independent of the order in which Fe and Pd were added to the ceria. Increased WGS activity was also observed upon the addition of Fe to Pd supported on Ce0.5Zr0.5O2. XRD measurements, performed after running the catalyst under WGS conditions, show the formation of a Fe–Pd alloy, even though similar measurements on an Fe/ceria catalyst showed that Fe3O4 was the stable phase for Fe in the absence of Pd. Possible implications of these results on the development of new WGS catalysts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号