首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了钡锶锑锰等离子掺杂对锆钛酸铅(PZT)系压电陶瓷的介电、压电性能和体积密度的影响。实验结果表明:对于Pb0.95Ba0.03Sr0.02(Zr1-yTiy)O3+xwt%MnSb2O6(PBSZTMS),在x=1.5、Zr/Ti=52/48附近获得了优越的压电活性。对于Pb0.95Ba0.03Sr0.02(MnSb2O6)x/3(Zr54Ti46)1-xO3(PBSMSZT),综合性能较好的组成点出现在x=0.05处。对于PbaBabSrc(MnSb2O6)x/3(Zr1-yTiy)1-xO3+zwt%MnSb2O6系列配方,发现Sr2+和Ba2+的共同添加会使样品致密度降低,介电常数、介质损耗和压电常数增加;当a=1,b=0,c=0,x=0.03,y=0.48,z=0.76时,获得了综合性能较好的陶瓷材料,有望应用于大功率超声压电马达器件领域。  相似文献   

2.
Pb(Zr, Ti)O3 ceramics have been elaborated by low temperature sintering at 900°C with the aid of oxyfluoride additives. The mixture of PbO and PbF2 (eutectic composition) allowed to achieve the densification of more than 98% of the theoretical density. The dielectric, piezoelectric and pyroelectric properties of thus obtained ceramics were investigated.  相似文献   

3.
以传统固相法制备的0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)03(PNN-PZT)压电陶瓷粉体为原料,采用挤压成型工艺制备含Pt金属芯压电陶瓷纤维。以PbTi03作为保护粉体,对纤维坯体进行1200℃不同时间(0.5、1.0h和2.0h)的烧结处理。利用X射线衍射仪、扫描电子显微镜、阻抗分析仪和铁电分析仪等研究了烧结时间对纤维微观结构、压电性能和铁电性能的影响。结果表明:在烧结时间范围内制备的压电陶瓷纤维为单一钙钛矿结构,未发现焦绿石相或其他杂相;随烧结时间增加,陶瓷纤维晶粒尺寸增大,压电和铁电性能明显提高。在1200℃保温2.0h制备的压电陶瓷纤维电学性能较好,压电常数(西1)、相对介电常数(曲、介电损耗(tanδ)和矫顽场(&)分别为-145pC/N、3313、2.6%和0.27kV/mm。介电温谱结果表明:该陶瓷纤维的特征Curie温度为125℃,峰值相对介电常数为8093。  相似文献   

4.
采用传统固相烧结法制备Pb0.94Sr0.06(Zr0.53Ti0.47)O3+(Ni2O3+Cr2O3)0.1wt%+xwt%MnO2+ywt%CeO2(简称PCrNi-4)压电陶瓷,通过正交试验设计研究了MnO2掺杂、CeO2掺杂、烧结温度等因素对基体材料性能的影响。利用XRD和SEM,并结合常规电性能测试手段研究不同影响因素对材料相结构、微观结构以及压电介电性能的影响。结果表明,当w(MnO2)=0.1%,w(CeO2)=0.3%,烧结温度为1280℃时制备的陶瓷综合性能最佳,此条件下的试样各性能参数分别为:d33=304.8pC/N,Kp=0.6113,εT33=1520,tgδ=0.289%,d33×g33=61.12×10-12CVm/N,适合制备大功率收发兼备压电换能器。  相似文献   

5.
通过电滞回线测试,探讨了xPb(Mn1/3Sb2/3)0.05(Zr1/2Ti1/2)0.95O3(1-x)Pb(Zn1/3Nb2/3)0.28(Zr1/2Ti1/2)0.72O3[xPMnS-(1-x)PZN]陶瓷的铁电性能及铁电相变特性.同时研究了Ba2 取代Pb2 对材料铁电性能的影响.结果表明;三方相含量较高的0.2PMnS-0.8PZN陶瓷具有较高的矫顽场和较大的剩余极化强度;四方相含量较高的0.5PMnS-0.5PZN和0.6PMnS-0.4PZN陶瓷具有较低的矫顽场和较小的剩余极化强度,Ba2 取代使三方相含量增加,铁电性能明显提高.  相似文献   

6.
赵雷康  周静  陈文 《陶瓷学报》2003,24(2):103-106
为了优化Pb(Mn1 3Sb2 3) x(Zn1 3Nb2 3) y(Zr ,Ti) zO3系压电陶瓷的介电性能 ,探讨了不同烧结温度及保温时间对材料性能的影响 ,以期获得材料的最佳制备工艺。实验结果表明 ,此四元系材料具有较宽的烧结温度范围 ,随保温时间的延长材料的性能提高 ,最终达到一个饱和值 ;在 12 0 0~ 12 2 0℃烧结工艺条件下 ,材料的机电耦合系数与机械品质因数最大 ,介电损耗最小 ,介电常数适中 ,可望用于高性能超声换能器的研制  相似文献   

7.
研究了CuO–V2O5–Bi2O3作为烧结助剂对Zn3Nb2O8陶瓷的烧结特性、微观结构、相结构及微波介电性能的影响。CuO–V2O5–Bi2O3复合掺杂可以将Zn3Nb2O8陶瓷的烧结温度从1150℃降到900℃。在900℃烧结4h的Zn3Nb2O8–0.25%(质量分数,下同)CuO–1.5%V2O5–1.5%Bi2O3陶瓷的密度达到了理论密度的98.1%,相对介电常数为18.8,品质因数与谐振频率之积为39442GHz。该体系的介电性能和陶瓷的致密度与烧结助剂的含量及烧结温度密切相关,陶瓷的致密度和相对介电常数随CuO–V2O5–Bi2O3烧结助剂含量的增加而增加,同样陶瓷的致密度和相对介电常数也随烧结温度的升高而提高。  相似文献   

8.
江健  张震  曹林洪 《广州化工》2012,40(20):62-64
利用铌铁矿预产物合成法,研究不同温度烧结下Li2CO3掺杂对0.2 PMN-0.8PZT压电陶瓷(简称PLC)的相结构和电性能的影响。X射线衍射(XRD)和扫描电镜(SEM)的分析结果表明,掺杂LiCO3的0.2PMN-0.8PZT压电陶瓷经不同温度煅烧后,所有陶瓷样品的相组成均为纯钙钛矿相,并随着烧结温度的升高,PLC的相结构有由四方相向菱方相转变的趋势。通过0.2PMN-0.8PZT压电陶瓷掺杂LiCO3煅烧后的微观形貌、介电常数、压电性能、铁电性能的分析,发现经1200℃烧结的样品的介电和压电性能最佳:介电常数(εr)为38512,室温压电常数(d33)为300 pC/N,剩余极化强度(Pr)为31.3 C/cm2,矫顽电场(Ec)为7.5 kV/cm。  相似文献   

9.
Multilayer components with excellent piezoelectric performance have been developed for fulfilling the requirement of new-generation electromechanical devices and systems. Multilayering of the piezoelectric ceramic requires good sinterability preferentially at lower temperature. In this study, copper (II) oxide (CuO) was utilized as the sintering additive to increase the sinterability of 0.49Pb(Ni1/3Nb2/3)O3–0.51Pb(Hf0.3Ti0.7)O3 (PNN-PHT) ceramics at low temperature, and simultaneously enhance the piezoelectric and dielectric properties of the ceramics. The results demonstrated that the addition of CuO influenced the sintering behavior, grain growth, and piezoelectric properties of the PNN-PHT ceramics. A ternary high performance piezoelectric PNN-PHT ceramic sintered at 1050°C with 0.5 mol% CuO exhibited excellent properties as follows: d33 = 912 pC N−1 and εr = 6665.  相似文献   

10.
弛豫型铁电体Pb(B1/3Nb2/3)O3基复合陶瓷中两相共存的研究   总被引:2,自引:0,他引:2  
在PZN-BT,PMN-BT-PT和PNN-PT系统中,用两相混合烧结法,分别制备了PZN基,PMN基和PNN基复合陶瓷,介电性能测试结果表明,PZN基陶瓷为两相共存的复相陶瓷,而PMN基和PNN基陶瓷中的两相都发生了很大程度的固溶,应用键价理论和键性分析对此进行了讨论,并从两组元间扩散动力这的角度和显微结构特征对这一现象进行了分析。  相似文献   

11.
In this study, in order to develop low-temperature sintering ceramics for a multilayer piezoelectric transformer application, we explored CuO and Bi2O3 as sintering aids at low temperature (900 °C) sintering condition for Sb, Li and Mn-substituted 0.8Pb(Zr0.48Ti0.52)O3–0.16Pb(Zn1/3Nb2/3)O3–0.04Pb(Ni1/3Nb2/3)O3 ceramics. These substituted ceramics have excellent piezoelectric and dielectric properties such as d33  347 pC/N, kp  0.57 and Qm  1469 when sintered at 1200 °C. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered below 900 °C were lower than the desired values. The additional Bi2O3 resulted in a significant improvement in the piezoelectric properties. The composition Sb, Li and Mn-substituted 0.8Pb(Zr0.48Ti0.52)O3–0.16Pb(Zn1/3Nb2/3)O3–0.04Pb(Ni1/3Nb2/3)O3 + 0.5 wt% CuO + 0.5 wt% Bi2O3 showed the value of kp = 0.56, Qm = 1042 (planar mode), d33 = 350 pC/N, when it was sintered at 900 °C for 2 h. These values indicated that the newly developed composition might be suitable for multilayer piezoelectric transformer application.  相似文献   

12.
We investigated the influence of CuO amount (0.5–3.0 mol%), sintering temperature (900°C–1000°C), and sintering time (2–6 h) on the low‐temperature sintering behavior of CuO‐added Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT22) ceramics. Normalized strain (Smax/Emax), piezoelectric coefficient (d33), and remanent polarization (Pr) of 1.0 mol% CuO‐added BNKT22 ceramics sintered at 950°C for 4 h was 280 pm/V, 180 pC/N, and 28 μC/cm2, respectively. These values are similar to those of pure BNKT22 ceramics sintered at 1150°C. In addition, we investigated the performance of multilayer ceramic actuators made from CuO‐added BNKT22 in acoustic sound speaker devices. A prototype sound speaker device showed similar output sound pressure levels as a Pb(Zr,Ti)O3‐based device in the frequency range 0.66–20 kHz. This result highlights the feasibility of using low‐cost multilayer ceramic devices made of lead‐free BNKT‐based piezoelectric materials in sound speaker devices.  相似文献   

13.
潘永军  王锋会  刘琨 《陶瓷》2014,(3):24-27
采用传统陶瓷工艺制备了0.95(K0.5Na0.5)NbO3-0.05CaZrO3无铅压电陶瓷。研究了烧结温度和极化工艺对陶瓷压电性能的影响。结果表明:随着烧结温度的提高,0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的体积密度增大,在1170℃时达到最大值,同时d33和kp,在此温度也分别达到他们的最大值210pC/N和0.40。极化工艺对0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的压电性能有明显的影响,0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的最佳极化温度是70℃,最佳极化电场是4kV/mm。  相似文献   

14.
PMnS-PZN-PZT压电纤维的制备与铁电性能   总被引:1,自引:1,他引:0  
采用固相法制备了0.8Pb(Mn1/3Sb2/3)0.05(Zr1/2Ti1/2)0.95O3–0.2Pb(Zn1/3Nb2/3)0.28(Zr1/2Ti1/2)0.72O3(PMnS–PZN–PZT)粉末,然后用塑性聚合物方法制备了PMnS–PZN–PZT压电纤维。研究了纤维夹持状态对其铁电性能的影响。结果表明:塑性聚合物法制备的PMnS–PZN–PZT压电纤维具有良好的铁电性能,压电纤维处于自由状态时,剩余极化强度和矫顽场分别为85.4μC/cm2和8.5kV/cm,但电滞回线很难饱和。将纤维采用环氧树脂固化后,剩余极化强度变成39.2μC/cm2,电滞回线呈饱和状态,说明夹持状态对纤维的铁电性能产生很大的影响。高压下压电纤维浇铸前后的漏电流测试结果表明,压电纤维浇铸后剩余极化强度变小主要与漏电流有关。  相似文献   

15.
用两相混合烧结法分别制备Pb(Zn1/3Nb2/3)O3系和Pb(Ni1/3Nb2/3)O3系复合陶瓷,介电性能测试结果表明,Pb(Zn/3Nb2/3)O3系陶瓷材料中保持了两相共存的复相结构,而Pb(Ni1/3Nb2/3)O3系陶瓷材料中却难以获得两相共存的复相结构,从晶体化学和扩散动力学的角度对这一结果进行了分析。  相似文献   

16.
Large piezoelectric effect is achieved in Li‐doped Ba0.85Ca0.15Ti0.90Zr0.10O3(BCTZ) ceramics by use of tuning the phase boundaries. Rhombohedral–orthorhombic (R–O) and orthorhombic–tetragonal (O–T) multiphase coexistence is constructed in the ceramics by changing Li contents. The high piezoelectric constant d33 (493 pC/N) and large electrostrain (dSmax/dEmax = 931 pm/V) have been observed in the Li‐doped (Ba, Ca)(Ti, Zr)O3 ceramics at low sintering temperature (1350°C/2 h). The significant enhancement in materials properties is ascribed to the multiphase region around room temperature induced by Li‐doped effect.  相似文献   

17.
综述了Ln(B1/2Ti1/2)O3 (B=Mg, Zn, Co)型微波介质陶瓷的结构、低温烧结及改性研究现状. 少量烧结助剂可有效降低陶瓷的烧结温度,但有时会恶化品质因数(Q×f). 离子取代可显著提高Q×f值,对谐振频率温度系数(τf)无明显影响;而复合改性则可有效调节τf值至近0. 最后探讨了Ln(B1/2Ti1/2)O3型微波介质陶瓷研究中存在的问题和未来的发展趋势,简化和优化合成工艺、实现低温烧结和调节谐振频率温度系数、加强低温烧结、离子取代和复合改性的机理研究是未来重要的研究方向.  相似文献   

18.
The paper tries to prepare dense piezoceramics by way of reactive liquid phase sintering. Technique concerning a low-temperature sinterable process is developed by incorporating 4PbO.B2O3. The host system is a perovskite type piezoceramics, 0.875Pb(Ti,Zr)O3–0.125Pb(Mg1/3Nb2/3)O3. It is clear that PbO deficiency of PMN-based relaxor can result in an excessive amount of pyrochlore phase which causes poor densification and greatly degraded dielectric properties. Additives, such as the Pb-based flux, 4PbO·B2O3, that increase the amount of PbO also reduce the fraction of pyrochlore phase of PMN-based. If small amounts of 4PbO·B2O3 glass powder are added to the calcined 0.875PZT–0.125PMN ceramics, the liquid pase is formed during sintering. Hence, the piezoelectric and dielectric properties are enhanced and the sintering temperature can be reduced. Grain growth in ceramics with sintering time and amounts of 4PbO·B2O3 dopants was also studied. The grain growth was analyzed from the kinetic grain growth equation: Rn=k×t.  相似文献   

19.
Ba掺杂对Pb(Zr,Ti,Sb)O_3压电陶瓷Curie温度与压电性能的影响   总被引:1,自引:1,他引:0  
用传统固相法制备了组成为0.98Pb1.0–xBaxTi0.48Zr0.52O3–0.02PbSbO3(x=0.18~0.24)的Ba掺杂Pb(Zr,Ti,Sb)O3(PSZT)压电陶瓷。通过X射线衍射和Raman光谱研究了Ba掺杂PSZT陶瓷的结构,并测量和分析了Ba掺杂对PSZT压电陶瓷的Curie温度和压电性能的影响。结果表明:Ba掺杂影响PSZT陶瓷中四方相和三方相的转化过程、两相比例、晶粒大小并导致四方相的晶格畸变。随Ba含量(x)从0.18增加到0.24,PSZT陶瓷的Curie温度从189℃几乎线性下降到141℃;当Ba掺杂量为0.22时,PSZT陶瓷的Curie温度为156℃,压电应变常数d33为578pC/N,机电耦合系数Kp为0.63,机械品质因数Qm为37.3。  相似文献   

20.
Low-temperature sintering of Pb(Zr,Ti)O3 (PZT) ceramics has been performed with the aid of oxyfluoride additives in order to compensate the volatilization of PbO, which results in the degradation of electric properties. An additive of a mixture of PbO and PbF2 (eutectic composition) realizes a liquid-phase sintering and allows high densification at low temperature. The densification of more than 98% of theoretical density was achieved by sintering at 900°C. The characterization of these PZT ceramics was carried out with XRD, TG, SEM, and dielectric measurements. The thermal variation of dielectric constant showed ferroelectric behavior. The highest permittivity value was obtained in the specimen fired at 900°C for 3 or 5 h with 3 wt% additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号