共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决当前纤维增强复合材料(FRP)加固钢筋混凝土梁抗弯承载力预测中模型不统一、计算繁琐、精度有限等问题,建立了统一化的抗弯承载力预测模型。根据既有文献收集外贴式、端锚式和嵌入式3种FRP典型加固方式加固钢筋混凝土梁试验数据,确定影响加固梁承载力的关键因素,通过XGBoost(极限梯度提升树)算法训练回归各影响因素与加固后梁抗弯承载力间的非线性映射关系,得到统一化的FRP加固钢筋混凝土梁抗弯承载力预测模型。随后在测试样本集上对该模型的预测精度进行了验证,与基于支持向量回归(SVR)和人工神经网络(ANN)两种代表性机器学习算法得到的预测模型进行了横向对比,并分析了不同加固方式下的预测精度。研究结果表明:该文得到的基于XGBoost的抗弯承载力预测模型拟合优度R2=0.9417,可见整体精度较高,有良好的性能;相比基于传统机器学习算法SVR和ANN建立的预测模型,基于集成学习算法XGBoost的拟合优度分别提升了8.00%及6.70%,均方根误差减少了33.94%和30.72%,平均绝对误差减少了32.38%和30.51%,表明基于XGBoost的模型精度更高,远优... 相似文献
2.
在服务运营管理研究领域,需求可变性的存在,对服务质量有着巨大的影响。医疗服务系统作为服务运营管理领域的重要代表,如何准确地拟合及预测病人的到达分布,对于医院合理安排资源配置起到了至关重要的作用。以以色列一家医院2007年1-10月份的急诊病人到达数据为基础,建立不同模型——非齐次泊松(NHPP)模型与幂律分布(Power-Law)模型——刻画急诊部门(ED)病人的到达规律,结果表明NHPP模型对数据的检验及拟合效果较好而幂律分布则仅能准确地刻画部分到达数据的特征。而为了进一步探究模型的适用性,对NHPP模型进行仿真,用幂律分布模型检验NHPP模型仿真得到的数据,结果显示幂律分布模型也能够较好地刻画该数据的分布特征,即印证了在一定条件下不同模型之间的可转化性,也为解决研究问题的多样化方法提供了有益思考。 相似文献
3.
4.
针对现有基于神经网络的剩余使用寿命预测方法存在训练时间较长的问题,提出一种基于XGBoost(extreme gradient boosting, XGBoost)算法的预测模型。首先,清洗历史数据,重构出涡扇发动机剩余使用寿命的完整退化轨迹数据;其次,分析各个特征与剩余使用寿命之间的相关性,依据零方差标准筛选可用特征;最后,通过XGBoost算法建立剩余使用寿命预测模型,并采用网格搜索法优化模型参数。结果表明,基于XGBoost算法的模型预测性能优于GBDT(gradient boosting decision tree),其中,拟合优度(r2)提升了约5%;均方根误差(RMSE)降低约6.83%;训练时间缩短近4/5。与CNN-LSTM方法相比,虽然XGBoost方法的预测精度略低,但训练时间较短,综合效率更高。 相似文献
5.
《中国测试》2020,(7)
为解决传统负荷预测方法存在的预测精度偏低的问题,通过分析短期负荷影响因素确定训练集,创建Stacking模型,并结合包括输入门、输出门与遗忘门在内的LSTM网络创建Stacking-LSTM混合模型,通过时间滑动窗口建立影响因素数据特征图,将其作为Stacking-LSTM混合模型的输入,经数据转换后得到特征类别更强的降维二级特征数据,输入到LSTM网络层实现短期负荷预测。该方法利用Stacking模型的集成作用和LSTM网络的强挖掘能力,增强降维后的数据类别特征,达到提升电力系统负荷动态平衡性的效果。仿真结果表明,该方法的负荷预测结果与实际值非常接近,具有较高的预测精准度。 相似文献
6.
基于Moore-Penrose逆矩阵的选择性集成 总被引:1,自引:0,他引:1
本文提出了一种基于Moore-Penrose逆矩阵的新型选择性集成学习算法.先独立训练出一批个体学习器并为每个学习器指定一个初始权值,然后应用基于Moore-Penrose逆矩阵的算法对这些权值进行优化,最后选择权值较大的个体学习器进行最终集成.本文提出的选择性集成学习算法方法简单、易于实现,执行效率高.对8个真实数据集的实验表明,该集成学习算法相对于一般的集成学习算法,可以采用更少的学习器而获得更高的泛化能力. 相似文献
7.
海上风电场地处偏远环境,长期受到盐碱腐蚀。为解决风电机组运行过程中产生的多种故障检测识别问题,在传统卷积神经网络LeNet-5的基础上构建模型。该模型采用ReLU函数作为激活函数,增加了卷积层、池化层和全连接层。针对风电机组的监督控制和数据采集(supervisory control and data acquisition,SCADA)系统及状态监控(condition monitoring,CM)系统所提供的数据集,进行多元类别故障诊断。并对多台风电机组进行聚类分析,应用集成学习方法,构建多风电机组故障诊断模型。实验表明,所提方法取得了97%~99%的诊断精度。通过将实验结果与其他算法进行对比,验证了该方法的有效性。 相似文献
8.
针对滚动轴承振动信号具有非平稳性、非线性且易受背景噪声干扰,故障特征难以提取等问题,提出一种基于WELCH功率谱算法的集成学习模型的故障诊断方法。首先使用WELCH算法对轴承的原始振动信号进行预处理,从中提取峭度、偏度、波形因子、峰值因子、脉冲因子和裕度因子6 个参数,作为支持向量机的特征向量;然后结合集成学习算法构造Bagging-SVM集成学习模型。实验结果表明,与单一的SVM分类器相比较,Bagging-SVM 集成模型对于轴承的故障诊断性能更优;在不同电机转速下的轴承故障诊断中,诊断率分别为97 %,98 %,98 %和99.5 %;说明了该集成模型在不同工况下的适用性强,诊断性能优秀。 相似文献
9.
声发射信号到达时间的信息,对于声发射事件的定位、识别以及声发射源机理分析都是非常重要的。实际应用中,常用人工读取或通过设定幅值阈值来获取信号的到达时间。针对以上常用方法的缺点,本文结合噪声信号的AR模型和声发射信号的AR模型,应用Akaike信息准则,实现了对声发射信号到达时间的自动识别。对实验数据的识别结果显示,该方法对信号的幅频特性变化比较敏感。在相同信噪比的情况下,该方法识别的偏差要小于阈值法。当信噪比较低时,阈值法可能会给出错误的结果,而该方法仍然能够给出较准确的结果。 相似文献
10.
负荷预测是电力系统中最重要的工作之一,准确的负荷预测可以帮助决策者合理地进行电网资源的调度,对保持电网高效、稳定、安全、经济地运行具有重要的作用。随着智能电网的发展,用户的用电数据呈指数增长,这促进了负荷预测研究的快速发展。特别是近年来负荷预测领域的技术已经发生了巨大的转变,很多传统的负荷预测方法逐渐被更加精确的基于数据驱动的深度学习方法所取代。本文综述了近年来深度学习方法在短期负荷预测领域的发展,并对深度学习在短期负荷预测中的最新成果进行了总结与深入分析,最后对短期负荷预测领域未来的发展进行了展望。 相似文献
11.
为解决飞机起落架载荷标定实验使用线性回归建立标定方程结果不理想的问题,考虑到实验中起落架压缩行程和应变片布片位置等因素对标定载荷的非线性影响,运用特征融合、集成学习理论,通过使用AdaBoost和XGBoost非线性回归方法,构建起落架载荷标定模型。首先,通过起落架载荷标定实验获取实验数据,使用主成分分析方法建立输入特征矩阵;其次,构建起落架载荷标定模型,将起落架三向加载载荷分别作为标签向量,训练集和测试集根据随机取样原则划分,使用AdaBoost和XGBoost两种方法训练标定模型;最后,在测试集中对载荷进行拟合预测,并使用均方根误差、平均绝对误差、决定系数、耗时4个评价指标对模型进行评估。实验结果显示,与广泛使用的最小二乘法相比,XGBoost方法建立的标定模型能够更好地拟合加载载荷,在不考虑时效性的场景下XGBoost算法更具优势。研究结果对提高飞机起落架载荷实测准确性以及飞机结构健康监测的进一步研究具有重要价值。 相似文献
12.
结构可靠性分析需要精确计算结构或系统的失效概率,当结构失效概率低时,运算量大且操作困难。可采用代理模型替代原始性能函数,结合自适应实验设计,在保证准确率的同时大幅减少原始模型的总运行次数。该文提出了基于自适应集成学习代理模型的结构可靠性分析方法,将适应性较广的Kriging与最近发展的PC-Kriging代理模型集成;利用代理模型提供预测点的方差特征,提出新的集成学习函数,识别高预测误差区域,实现高效拟合失效边界;通过主动学习算法在预测误差大和接近极限状态的区域添加采样,迭代更新集成代理模型。通过3个算例,验证了该文方法与单一代理模型结构可靠性分析方法的优势,与AK-MCS+U和AK-MCS+EFF相比,所提方法计算成本低、准确度高。 相似文献
13.
目的通过三维扫描仪得到的点云数据往往存在很多异常值,例如噪点、遗失点和外部点等。在这些异常值存在的情况下,为了提高三维点云数据的分类精度,提出一种基于集成学习的强鲁棒性三维点云数据分类方法。方法提出一种基于最大投票法的集成学习思想,将2个深度神经网络的分类结果进行集成,从而提高网络的泛化性和准确性;采用全局特征增强和中心损失函数来优化神经网络结构,提高分类精度并增强鲁棒性。结果文中方法缩短模型训练时间至30个迭代次数,且在有噪点、丢失点和外部点的情况下分类精度均得到有效提升。结论提出的EL-3D算法在含有噪点、丢失点和外部点的情况下,鲁棒性效果要优于目前的点云分类方法。 相似文献
14.
针对轴承运行工况不同、有效数据少、数据无标签、预测准确度低等问题,提出一种基于改进时间卷积网络的迁移学习轴承寿命预测模型,将模型在源域上学习的寿命预测知识迁移到目标域,可用小样本无标签数据训练出迁移模型。首先,采用有效通道注意力模块对源域数据特征重新标定;其次,使用时间卷积网络(temporal convolutional network, TCN)学习特征信息,并训练出最优源域模型;最后,利用源域数据、源域模型和目标域数据训练出迁移模型,迁移模型可以对不同设备不同工况信号进行剩余寿命预测。在IEEE PHM Challenge 2012轴承全寿命数据集和西安交通大学XJTU-SY滚动轴承加速寿命数据集上开展对比试验,结果表明,该方法可以更好地挖掘轴承内在退化趋势,有效提高剩余使用寿命预测精度,对比现有流行预测方法预测误差降低40.1%~77.8%,证明了该方法在不同设备不同工况条件下剩余寿命预测的有效性和可行性。 相似文献
15.
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 相似文献
16.
针对现有深度图像遮挡检测方法不能有效地检测出深度信息变化不明显的遮挡边界点的状况,提出了8邻域总深度差特征和最大面积特征,并定义了计算方法。在此基础上,提出一种新的基于集成学习思想的深度图像遮挡边界检测方法,该方法结合所提新特征及现有遮挡相关特征训练基于决策树的AdaBOOst分类器,完成对深度图像中遮挡边界点及非遮挡边界点的分类,实现对深度图像中遮挡边界的检测。实验结果表明,同已有方法相比,所提方法具有较高的准确性和较好的普适性。 相似文献
17.
北衙碱性斑岩型金矿床为“三江”地区金沙江-哀牢山喜山期富碱斑岩带中的金多金属矿床。碱性斑岩、复式穹隆构造与金矿床呈现构造-岩浆-矿化三位一体,金矿化集中于成矿晚期热液活动阶段。矿床遥感地质方法与构造地球化学方法获取了丰富的成岩成矿影像———构造地球化学(地质信息组成的矿床定位预测网络结构“隐信息”。据此构建了影像线环结构-构造地球化学集成成矿预测方法。 相似文献
18.
为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进行训练,并综合GRU网络以及XGBoost算法,提出了一种Stacking集成学习框架下多模型融合的能量分配策略。仿真结果表明,与仅使用单一电池的储能系统相比,基于Stacking融合模型的实时能量分配系统在UDDS和US06两种循环工况下,电池峰值电流分别降低了48.7%和50.8%,有效削弱了电池的峰值电流,提升了电池的整体性能。 相似文献
19.
鉴于多分类器集成能够获得比单个分类器更好的性能,但是对于支持向量机(support vector ma-chine,SVM),一般的集成方法很难达到效果.特提出了基于局部精度(local accuracy,LA)的动态集成算法.首先,通过多种方法产生个体分类器;其次,利用验证数据集来定义LA,LA用来衡量各个体分类器的权重以及判断是否挑选该个体分类器的标准;最后,在某研究区的遥感图像数据集上进行实验.实验结果表明,动态集成的效果要优于静态集成,特别是异类动态集成效果最好.静态集成只考虑了分类器在训练样本中的表现而没有考虑测试样本的特征,对于动态集成,可以根据测试样本在验证集上的表现来选择个体分类器,因此它展现出更好的性能. 相似文献
20.
为准确高效地识别核爆电磁脉冲(nuclear electromagnetic pulse,NEMP)和闪电电磁脉冲(lightning electromagnetic pulse,LEMP),提出一种基于自适应信号分解和集成学习的识别分类方法。首先,针对样本不均衡问题,利用数据扩增方法对数据集进行预处理;然后,采用希尔伯特-黄变换对NEMP和LEMP分别进行自适应信号分解;其次,对分解信号提取其在时域、频域和小波域的特征;最后,对提取特征采用集成学习算法进行识别分类。试验结果表明,该方法在实测数据上的准确率能够达到99.99%以上,LEMP信号的误报率低于万分之一。 相似文献